UNCLASSIFIED - NO CUI

Skip to content

Update dependency numpy to v1.22.2

renovate requested to merge renovate/numpy-1.x into development

This MR contains the following updates:

Package Type Update Change
numpy (source) ironbank-pypi minor 1.20.2 -> 1.22.2

Release Notes

numpy/numpy

v1.22.2

Compare Source

NumPy 1.22.2 Release Notes

The NumPy 1.22.2 is maintenance release that fixes bugs discovered after the 1.22.1 release. Notable fixes are:

  • Several build related fixes for downstream projects and other platforms.
  • Various Annotation fixes/additions.
  • Numpy wheels for Windows will use the 1.41 tool chain, fixing downstream link problems for projects using NumPy provided libraries on Windows.
  • Deal with CVE-2021-41495 complaint.

The Python versions supported for this release are 3.8-3.10.

Contributors

A total of 14 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Andrew J. Hesford +
  • Bas van Beek
  • Brénainn Woodsend +
  • Charles Harris
  • Hood Chatham
  • Janus Heide +
  • Leo Singer
  • Matti Picus
  • Mukulika Pahari
  • Niyas Sait
  • Pearu Peterson
  • Ralf Gommers
  • Sebastian Berg
  • Serge Guelton

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #​20842: BLD: Add NPY_DISABLE_SVML env var to opt out of SVML
  • #​20843: BUG: Fix build of third party extensions with Py_LIMITED_API
  • #​20844: TYP: Fix pyright being unable to infer the real and imag...
  • #​20845: BUG: Fix comparator function signatures
  • #​20906: BUG: Avoid importing numpy.distutils on import numpy.testing
  • #​20907: MAINT: remove outdated mingw32 fseek support
  • #​20908: TYP: Relax the return type of np.vectorize
  • #​20909: BUG: fix f2py's define for threading when building with Mingw
  • #​20910: BUG: distutils: fix building mixed C/Fortran extensions
  • #​20912: DOC,TST: Fix Pandas code example as per new release
  • #​20935: TYP, MAINT: Add annotations for flatiter.__setitem__
  • #​20936: MAINT, TYP: Added missing where typehints in fromnumeric.pyi
  • #​20937: BUG: Fix build_ext interaction with non numpy extensions
  • #​20938: BUG: Fix missing intrinsics for windows/arm64 target
  • #​20945: REL: Prepare for the NumPy 1.22.2 release.
  • #​20982: MAINT: f2py: don't generate code that triggers -Wsometimes-uninitialized.
  • #​20983: BUG: Fix incorrect return type in reduce without initial value
  • #​20984: ENH: review return values for PyArray_DescrNew
  • #​20985: MAINT: be more tolerant of setuptools >= 60
  • #​20986: BUG: Fix misplaced return.
  • #​20992: MAINT: Further small return value validation fixes

Checksums

MD5
2319f8d7c629d0ba3d3d3b1d5605d494  numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
023c01a6d3aa528f8e88b0837dcab7ed  numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
84b36e8893b811d17a19404c68db7ce6  numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
744da9614e8272a384b542d129cd17a9  numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ee012ed5e7c98c6f48026dfa818b2274  numpy-1.22.2-cp310-cp310-win_amd64.whl
73e4fdcf398327bc4241dc38b6d10211  numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
9fcbca2a614af3b9a37456643ab1c99d  numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
b7e0d4a19867d33765c7187d1390eef4  numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc8d79d75588737ea77fe85a4f05365a  numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
05906141c095148c53c043c381e6fabe  numpy-1.22.2-cp38-cp38-win32.whl
05d3b6d34c0fa031e69ec0476e8d4c9c  numpy-1.22.2-cp38-cp38-win_amd64.whl
1449889d856de0e88437fa76d3284e00  numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
e25666ab6ec0692368f328b7b98c27a3  numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
59e3013894bcc6267054c746d9339cf8  numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7606b9898c20d2b2aa7fc7018bc9c5cd  numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2686a1495c620e85842967bf8a5f1b2f  numpy-1.22.2-cp39-cp39-win32.whl
54432a84807ab69ac3432e6090d5a169  numpy-1.22.2-cp39-cp39-win_amd64.whl
4dbecace42595742485b854b213341b6  numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5b506b01ef454f39272ca75de1c7f61c  numpy-1.22.2.tar.gz
a903008d992b77cb68129173c0f61f60  numpy-1.22.2.zip
SHA256
515a8b6edbb904594685da6e176ac9fbea8f73a5ebae947281de6613e27f1956  numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
76a4f9bce0278becc2da7da3b8ef854bed41a991f4226911a24a9711baad672c  numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
168259b1b184aa83a514f307352c25c56af111c269ffc109d9704e81f72e764b  numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3556c5550de40027d3121ebbb170f61bbe19eb639c7ad0c7b482cd9b560cd23b  numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aafa46b5a39a27aca566198d3312fb3bde95ce9677085efd02c86f7ef6be4ec7  numpy-1.22.2-cp310-cp310-win_amd64.whl
55535c7c2f61e2b2fc817c5cbe1af7cb907c7f011e46ae0a52caa4be1f19afe2  numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
60cb8e5933193a3cc2912ee29ca331e9c15b2da034f76159b7abc520b3d1233a  numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
0b536b6840e84c1c6a410f3a5aa727821e6108f3454d81a5cd5900999ef04f89  numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2638389562bda1635b564490d76713695ff497242a83d9b684d27bb4a6cc9d7a  numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6767ad399e9327bfdbaa40871be4254d1995f4a3ca3806127f10cec778bd9896  numpy-1.22.2-cp38-cp38-win32.whl
03ae5850619abb34a879d5f2d4bb4dcd025d6d8fb72f5e461dae84edccfe129f  numpy-1.22.2-cp38-cp38-win_amd64.whl
d76a26c5118c4d96e264acc9e3242d72e1a2b92e739807b3b69d8d47684b6677  numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
15efb7b93806d438e3bc590ca8ef2f953b0ce4f86f337ef4559d31ec6cf9d7dd  numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
badca914580eb46385e7f7e4e426fea6de0a37b9e06bec252e481ae7ec287082  numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
94dd11d9f13ea1be17bac39c1942f527cbf7065f94953cf62dfe805653da2f8f  numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8cf33634b60c9cef346663a222d9841d3bbbc0a2f00221d6bcfd0d993d5543f6  numpy-1.22.2-cp39-cp39-win32.whl
59153979d60f5bfe9e4c00e401e24dfe0469ef8da6d68247439d3278f30a180f  numpy-1.22.2-cp39-cp39-win_amd64.whl
4a176959b6e7e00b5a0d6f549a479f869829bfd8150282c590deee6d099bbb6e  numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
093d513a460fd94f94c16193c3ef29b2d69a33e482071e3d6d6e561a700587a6  numpy-1.22.2.tar.gz
076aee5a3763d41da6bef9565fdf3cb987606f567cd8b104aded2b38b7b47abf  numpy-1.22.2.zip

v1.22.1

Compare Source

NumPy 1.22.1 Release Notes

The NumPy 1.22.1 is maintenance release that fixes bugs discovered after the 1.22.0 release. Notable fixes are:

  • Fix f2PY docstring problems (SciPy)
  • Fix reduction type problems (AstroPy)
  • Fix various typing bugs.

The Python versions supported for this release are 3.8-3.10.

Contributors

A total of 14 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Arryan Singh
  • Bas van Beek
  • Charles Harris
  • Denis Laxalde
  • Isuru Fernando
  • Kevin Sheppard
  • Matthew Barber
  • Matti Picus
  • Melissa Weber Mendonça
  • Mukulika Pahari
  • Omid Rajaei +
  • Pearu Peterson
  • Ralf Gommers
  • Sebastian Berg

Pull requests merged

A total of 20 pull requests were merged for this release.

  • #​20702: MAINT, DOC: Post 1.22.0 release fixes.
  • #​20703: DOC, BUG: Use pngs instead of svgs.
  • #​20704: DOC: Fixed the link on user-guide landing page
  • #​20714: BUG: Restore vc141 support
  • #​20724: BUG: Fix array dimensions solver for multidimensional arguments...
  • #​20725: TYP: change type annotation for __array_namespace__ to ModuleType
  • #​20726: TYP, MAINT: Allow ndindex to accept integer tuples
  • #​20757: BUG: Relax dtype identity check in reductions
  • #​20763: TYP: Allow time manipulation functions to accept date and timedelta...
  • #​20768: TYP: Relax the type of ndarray.__array_finalize__
  • #​20795: MAINT: Raise RuntimeError if setuptools version is too recent.
  • #​20796: BUG, DOC: Fixes SciPy docs build warnings
  • #​20797: DOC: fix OpenBLAS version in release note
  • #​20798: PERF: Optimize array check for bounded 0,1 values
  • #​20805: BUG: Fix that reduce-likes honor out always (and live in the...
  • #​20806: BUG: array_api.argsort(descending=True) respects relative...
  • #​20807: BUG: Allow integer inputs for pow-related functions in array_api
  • #​20814: DOC: Refer to NumPy, not pandas, in main page
  • #​20815: DOC: Update Copyright to 2022 [License]
  • #​20819: BUG: Return correctly shaped inverse indices in array_api set...

Checksums

MD5
8edd68c8998cb694e244ce793b2d088c  numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl
e4858aafd41cdba76cd14161bfc512c3  numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl
96f4fc3f321625278ca3807c7c8c789c  numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl
2ddc25b9c9d7b517610689055f9f553a  numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8d40c6fd64389c05646b5ef95cded6e5  numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1a8359c6436d1bcfe84a094337903a48  numpy-1.22.1-cp310-cp310-win_amd64.whl
033f9aa72a732646f3fb4563226320ee  numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl
59e13abecdf4194f75b654f1d853b244  numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl
3ce885a0c10e95f5756d7c1878eaa246  numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl
546b2a0866561673d5b7eadcc086af24  numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
200c0a7bc3a24cfa6f4358d7274b5535  numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
defe48b3b5f44c3991e830f7cde0a79c  numpy-1.22.1-cp38-cp38-win32.whl
15557a847a78bcbf651ca6689ae37935  numpy-1.22.1-cp38-cp38-win_amd64.whl
067e734594c67d8141190b7eabb979ee  numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl
1458d42b26da341baaee134d85e3fd70  numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl
463b365c80efffd807194c78b4796235  numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl
58d8dc02dd884898c1b7ee1bee1dd216  numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
48e2d2905822f78a96d400c78bd16cbb  numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c5059bd82d8f2c509c889fba09251307  numpy-1.22.1-cp39-cp39-win32.whl
eb9a0655d16897f0adf6ea53b9f3bda4  numpy-1.22.1-cp39-cp39-win_amd64.whl
74cb5dba2f37dc445ffd3068eb1d58fe  numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
90fff1ee7c7f843fc7a234addc70c71c  numpy-1.22.1.tar.gz
c25dad73053350dd0278605d8ed8a5c7  numpy-1.22.1.zip
SHA256
3d62d6b0870b53799204515145935608cdeb4cebb95a26800b6750e48884cc5b  numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl
831f2df87bd3afdfc77829bc94bd997a7c212663889d56518359c827d7113b1f  numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl
8d1563060e77096367952fb44fca595f2b2f477156de389ce7c0ade3aef29e21  numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl
69958735d5e01f7b38226a6c6e7187d72b7e4d42b6b496aca5860b611ca0c193  numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
45a7dfbf9ed8d68fd39763940591db7637cf8817c5bce1a44f7b56c97cbe211e  numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7e957ca8112c689b728037cea9c9567c27cf912741fabda9efc2c7d33d29dfa1  numpy-1.22.1-cp310-cp310-win_amd64.whl
800dfeaffb2219d49377da1371d710d7952c9533b57f3d51b15e61c4269a1b5b  numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl
65f5e257987601fdfc63f1d02fca4d1c44a2b85b802f03bd6abc2b0b14648dd2  numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl
632e062569b0fe05654b15ef0e91a53c0a95d08ffe698b66f6ba0f927ad267c2  numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl
0d245a2bf79188d3f361137608c3cd12ed79076badd743dc660750a9f3074f7c  numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
26b4018a19d2ad9606ce9089f3d52206a41b23de5dfe8dc947d2ec49ce45d015  numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8ad59e6e341f38266f1549c7c2ec70ea0e3d1effb62a44e5c3dba41c55f0187  numpy-1.22.1-cp38-cp38-win32.whl
60f19c61b589d44fbbab8ff126640ae712e163299c2dd422bfe4edc7ec51aa9b  numpy-1.22.1-cp38-cp38-win_amd64.whl
2db01d9838a497ba2aa9a87515aeaf458f42351d72d4e7f3b8ddbd1eba9479f2  numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl
bcd19dab43b852b03868796f533b5f5561e6c0e3048415e675bec8d2e9d286c1  numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl
78bfbdf809fc236490e7e65715bbd98377b122f329457fffde206299e163e7f3  numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl
c51124df17f012c3b757380782ae46eee85213a3215e51477e559739f57d9bf6  numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88d54b7b516f0ca38a69590557814de2dd638d7d4ed04864826acaac5ebb8f01  numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b5ec9a5eaf391761c61fd873363ef3560a3614e9b4ead17347e4deda4358bca4  numpy-1.22.1-cp39-cp39-win32.whl
4ac4d7c9f8ea2a79d721ebfcce81705fc3cd61a10b731354f1049eb8c99521e8  numpy-1.22.1-cp39-cp39-win_amd64.whl
e60ef82c358ded965fdd3132b5738eade055f48067ac8a5a8ac75acc00cad31f  numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dd1968402ae20dfd59b34acd799b494be340c774f6295e9bf1c2b9842a5e416d  numpy-1.22.1.tar.gz
e348ccf5bc5235fc405ab19d53bec215bb373300e5523c7b476cc0da8a5e9973  numpy-1.22.1.zip

v1.22.0

Compare Source

NumPy 1.22.0 Release Notes

NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

  • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
  • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
  • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
  • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
  • A new configurable allocator for use by downstream projects.

These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

Expired deprecations

Deprecated numeric style dtype strings have been removed

Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

(gh-19539)

Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

(gh-19615)

Deprecations

Use delimiter rather than delimitor as kwarg in mrecords

The misspelled keyword argument delimitor of numpy.ma.mrecords.fromtextfile() has been changed to delimiter, using it will emit a deprecation warning.

(gh-19921)

Passing boolean kth values to (arg-)partition has been deprecated

numpy.partition and numpy.argpartition would previously accept boolean values for the kth parameter, which would subsequently be converted into integers. This behavior has now been deprecated.

(gh-20000)

The np.MachAr class has been deprecated

The numpy.MachAr class and finfo.machar <numpy.finfo> attribute have been deprecated. Users are encouraged to access the property if interest directly from the corresponding numpy.finfo attribute.

(gh-20201)

Compatibility notes

Distutils forces strict floating point model on clang

NumPy now sets the -ftrapping-math option on clang to enforce correct floating point error handling for universal functions. Clang defaults to non-IEEE and C99 conform behaviour otherwise. This change (using the equivalent but newer -ffp-exception-behavior=strict) was attempted in NumPy 1.21, but was effectively never used.

(gh-19479)

Removed floor division support for complex types

Floor division of complex types will now result in a TypeError

>>> a = np.arange(10) + 1j* np.arange(10)
>>> a // 1
TypeError: ufunc 'floor_divide' not supported for the input types...

(gh-19135)

numpy.vectorize functions now produce the same output class as the base function

When a function that respects numpy.ndarray subclasses is vectorized using numpy.vectorize, the vectorized function will now be subclass-safe also for cases that a signature is given (i.e., when creating a gufunc): the output class will be the same as that returned by the first call to the underlying function.

(gh-19356)

Python 3.7 is no longer supported

Python support has been dropped. This is rather strict, there are changes that require Python >= 3.8.

(gh-19665)

str/repr of complex dtypes now include space after punctuation

The repr of np.dtype({"names": ["a"], "formats": [int], "offsets": [2]}) is now dtype({'names': ['a'], 'formats': ['<i8'], 'offsets': [2], 'itemsize': 10}), whereas spaces where previously omitted after colons and between fields.

The old behavior can be restored via np.set_printoptions(legacy="1.21").

(gh-19687)

Corrected advance in PCG64DSXM and PCG64

Fixed a bug in the advance method of PCG64DSXM and PCG64. The bug only affects results when the step was larger than 2^{64} on platforms that do not support 128-bit integers(e.g., Windows and 32-bit Linux).

(gh-20049)

Change in generation of random 32 bit floating point variates

There was bug in the generation of 32 bit floating point values from the uniform distribution that would result in the least significant bit of the random variate always being 0. This has been fixed.

This change affects the variates produced by the random.Generator methods random, standard_normal, standard_exponential, and standard_gamma, but only when the dtype is specified as numpy.float32.

(gh-20314)

C API changes

Masked inner-loops cannot be customized anymore

The masked inner-loop selector is now never used. A warning will be given in the unlikely event that it was customized.

We do not expect that any code uses this. If you do use it, you must unset the selector on newer NumPy version. Please also contact the NumPy developers, we do anticipate providing a new, more specific, mechanism.

The customization was part of a never-implemented feature to allow for faster masked operations.

(gh-19259)

New Features

NEP 49 configurable allocators

As detailed in NEP 49, the function used for allocation of the data segment of a ndarray can be changed. The policy can be set globally or in a context. For more information see the NEP and the data_memory{.interpreted-text role="ref"} reference docs. Also add a NUMPY_WARN_IF_NO_MEM_POLICY override to warn on dangerous use of transfering ownership by setting NPY_ARRAY_OWNDATA.

(gh-17582)

Implementation of the NEP 47 (adopting the array API standard)

An initial implementation of NEP47, adoption of the array API standard, has been added as numpy.array_api. The implementation is experimental and will issue a UserWarning on import, as the array API standard is still in draft state. numpy.array_api is a conforming implementation of the array API standard, which is also minimal, meaning that only those functions and behaviors that are required by the standard are implemented (see the NEP for more info). Libraries wishing to make use of the array API standard are encouraged to use numpy.array_api to check that they are only using functionality that is guaranteed to be present in standard conforming implementations.

(gh-18585)

Generate C/C++ API reference documentation from comments blocks is now possible

This feature depends on Doxygen in the generation process and on Breathe to integrate it with Sphinx.

(gh-18884)

Assign the platform-specific c_intp precision via a mypy plugin

The mypy plugin, introduced in numpy/numpy#​17843, has again been expanded: the plugin now is now responsible for setting the platform-specific precision of numpy.ctypeslib.c_intp, the latter being used as data type for various numpy.ndarray.ctypes attributes.

Without the plugin, aforementioned type will default to ctypes.c_int64.

To enable the plugin, one must add it to their mypy configuration file:

[mypy]
plugins = numpy.typing.mypy_plugin

(gh-19062)

Add NEP 47-compatible dlpack support

Add a ndarray.__dlpack__() method which returns a dlpack C structure wrapped in a PyCapsule. Also add a np._from_dlpack(obj) function, where obj supports __dlpack__(), and returns an ndarray.

(gh-19083)

keepdims optional argument added to numpy.argmin, numpy.argmax

keepdims argument is added to numpy.argmin, numpy.argmax. If set to True, the axes which are reduced are left in the result as dimensions with size one. The resulting array has the same number of dimensions and will broadcast with the input array.

(gh-19211)

bit_count to compute the number of 1-bits in an integer

Computes the number of 1-bits in the absolute value of the input. This works on all the numpy integer types. Analogous to the builtin int.bit_count or popcount in C++.

>>> np.uint32(1023).bit_count()
10
>>> np.int32(-127).bit_count()
7

(gh-19355)

The ndim and axis attributes have been added to numpy.AxisError

The ndim and axis parameters are now also stored as attributes within each numpy.AxisError instance.

(gh-19459)

Preliminary support for windows/arm64 target

numpy added support for windows/arm64 target. Please note OpenBLAS support is not yet available for windows/arm64 target.

(gh-19513)

Added support for LoongArch

LoongArch is a new instruction set, numpy compilation failure on LoongArch architecture, so add the commit.

(gh-19527)

A .clang-format file has been added

Clang-format is a C/C++ code formatter, together with the added .clang-format file, it produces code close enough to the NumPy C_STYLE_GUIDE for general use. Clang-format version 12+ is required due to the use of several new features, it is available in Fedora 34 and Ubuntu Focal among other distributions.

(gh-19754)

is_integer is now available to numpy.floating and numpy.integer

Based on its counterpart in Python float and int, the numpy floating point and integer types now support float.is_integer. Returns True if the number is finite with integral value, and False otherwise.

>>> np.float32(-2.0).is_integer()
True
>>> np.float64(3.2).is_integer()
False
>>> np.int32(-2).is_integer()
True

(gh-19803)

Symbolic parser for Fortran dimension specifications

A new symbolic parser has been added to f2py in order to correctly parse dimension specifications. The parser is the basis for future improvements and provides compatibility with Draft Fortran 202x.

(gh-19805)

ndarray, dtype and number are now runtime-subscriptable

Mimicking PEP-585, the numpy.ndarray, numpy.dtype and numpy.number classes are now subscriptable for python 3.9 and later. Consequently, expressions that were previously only allowed in .pyi stub files or with the help of from __future__ import annotations are now also legal during runtime.

>>> import numpy as np
>>> from typing import Any

>>> np.ndarray[Any, np.dtype[np.float64]]
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]

(gh-19879)

Improvements

ctypeslib.load_library can now take any path-like object

All parameters in the can now take any python:path-like object{.interpreted-text role="term"}. This includes the likes of strings, bytes and objects implementing the __fspath__<os.PathLike.__fspath__>{.interpreted-text role="meth"} protocol.

(gh-17530)

Add smallest_normal and smallest_subnormal attributes to finfo

The attributes smallest_normal and smallest_subnormal are available as an extension of finfo class for any floating-point data type. To use these new attributes, write np.finfo(np.float64).smallest_normal or np.finfo(np.float64).smallest_subnormal.

(gh-18536)

numpy.linalg.qr accepts stacked matrices as inputs

numpy.linalg.qr is able to produce results for stacked matrices as inputs. Moreover, the implementation of QR decomposition has been shifted to C from Python.

(gh-19151)

numpy.fromregex now accepts os.PathLike implementations

numpy.fromregex now accepts objects implementing the __fspath__<os.PathLike> protocol, e.g. pathlib.Path.

(gh-19680)

Add new methods for quantile and percentile

quantile and percentile now have have a method= keyword argument supporting 13 different methods. This replaces the interpolation= keyword argument.

The methods are now aligned with nine methods which can be found in scientific literature and the R language. The remaining methods are the previous discontinuous variations of the default "linear" one.

Please see the documentation of numpy.percentile for more information.

(gh-19857)

Missing parameters have been added to the nan<x> functions

A number of the nan<x> functions previously lacked parameters that were present in their <x>-based counterpart, e.g. the where parameter was present in numpy.mean but absent from numpy.nanmean.

The following parameters have now been added to the nan<x> functions:

  • nanmin: initial & where
  • nanmax: initial & where
  • nanargmin: keepdims & out
  • nanargmax: keepdims & out
  • nansum: initial & where
  • nanprod: initial & where
  • nanmean: where
  • nanvar: where
  • nanstd: where

(gh-20027)

Annotating the main Numpy namespace

Starting from the 1.20 release, PEP 484 type annotations have been included for parts of the NumPy library; annotating the remaining functions being a work in progress. With the release of 1.22 this process has been completed for the main NumPy namespace, which is now fully annotated.

Besides the main namespace, a limited number of sub-packages contain annotations as well. This includes, among others, numpy.testing, numpy.linalg and numpy.random (available since 1.21).

(gh-20217)

Vectorize umath module using AVX-512

By leveraging Intel Short Vector Math Library (SVML), 18 umath functions (exp2, log2, log10, expm1, log1p, cbrt, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh) are vectorized using AVX-512 instruction set for both single and double precision implementations. This change is currently enabled only for Linux users and on processors with AVX-512 instruction set. It provides an average speed up of 32x and 14x for single and double precision functions respectively.

(gh-19478)

OpenBLAS v0.3.18

Update the OpenBLAS used in testing and in wheels to v0.3.18

(gh-20058)

Checksums

MD5
66757b963ad5835038b9a2a9df852c84  numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
86b7f3a94c09dbd6869614c4d7f9ba5e  numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
5184db17d8e5e6ecdc53e2f0a6964c35  numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
6643e9a076cce736cfbe15face4db9db  numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6efef45bf63594703c094b2ad729e648  numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a1a21bb0958a3eb920deeef9e745935  numpy-1.22.0-cp310-cp310-win_amd64.whl
45241fb5f31ea46e2b6f1321a63c8e1c  numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
472f24a5d35116634fcc57e9bda899bc  numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
6c15cf7847b20101ae281ade6121b79e  numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
313f0fd99a899a7465511c1418e1031f  numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9ae6ecde0cbeadd2a9d7b8ae54285863  numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0f31a7b9e128b0cdafecf98cf1301fc0  numpy-1.22.0-cp38-cp38-win32.whl
f4b45579cf532ea632b890b1df387081  numpy-1.22.0-cp38-cp38-win_amd64.whl
2cb27112b11c16f700e6019f5fd36408  numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
4554a5797a4cb787b5169a8f5482fb95  numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
3780decd94837da6f0816f2feaace9c2  numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
6e519dd5205510dfebcadc6f7fdf9738  numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
89d455bf290f459a70c57620f02d5b69  numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6425f8d7dc779a54b8074e198cea43c9  numpy-1.22.0-cp39-cp39-win32.whl
1b5c670328146975b21b54fa5ef8ec4c  numpy-1.22.0-cp39-cp39-win_amd64.whl
05d842127ca85cca12fed3a26b0f5177  numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab751b8d4195f91ae61a402184d16d18  numpy-1.22.0.tar.gz
252de134862a27bd66705d29622edbfe  numpy-1.22.0.zip
SHA256
3d22662b4b10112c545c91a0741f2436f8ca979ab3d69d03d19322aa970f9695  numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
11a1f3816ea82eed4178102c56281782690ab5993251fdfd75039aad4d20385f  numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
5dc65644f75a4c2970f21394ad8bea1a844104f0fe01f278631be1c7eae27226  numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
42c16cec1c8cf2728f1d539bd55aaa9d6bb48a7de2f41eb944697293ef65a559  numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a97e82c39d9856fe7d4f9b86d8a1e66eff99cf3a8b7ba48202f659703d27c46f  numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e41e8951749c4b5c9a2dc5fdbc1a4eec6ab2a140fdae9b460b0f557eed870f4d  numpy-1.22.0-cp310-cp310-win_amd64.whl
bece0a4a49e60e472a6d1f70ac6cdea00f9ab80ff01132f96bd970cdd8a9e5a9  numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
818b9be7900e8dc23e013a92779135623476f44a0de58b40c32a15368c01d471  numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
47ee7a839f5885bc0c63a74aabb91f6f40d7d7b639253768c4199b37aede7982  numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
a024181d7aef0004d76fb3bce2a4c9f2e67a609a9e2a6ff2571d30e9976aa383  numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f71d57cc8645f14816ae249407d309be250ad8de93ef61d9709b45a0ddf4050c  numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
283d9de87c0133ef98f93dfc09fad3fb382f2a15580de75c02b5bb36a5a159a5  numpy-1.22.0-cp38-cp38-win32.whl
2762331de395739c91f1abb88041f94a080cb1143aeec791b3b223976228af3f  numpy-1.22.0-cp38-cp38-win_amd64.whl
76ba7c40e80f9dc815c5e896330700fd6e20814e69da9c1267d65a4d051080f1  numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
0cfe07133fd00b27edee5e6385e333e9eeb010607e8a46e1cd673f05f8596595  numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
6ed0d073a9c54ac40c41a9c2d53fcc3d4d4ed607670b9e7b0de1ba13b4cbfe6f  numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
41388e32e40b41dd56eb37fcaa7488b2b47b0adf77c66154d6b89622c110dfe9  numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b55b953a1bdb465f4dc181758570d321db4ac23005f90ffd2b434cc6609a63dd  numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5a311ee4d983c487a0ab546708edbdd759393a3dc9cd30305170149fedd23c88  numpy-1.22.0-cp39-cp39-win32.whl
a97a954a8c2f046d3817c2bce16e3c7e9a9c2afffaf0400f5c16df5172a67c9c  numpy-1.22.0-cp39-cp39-win_amd64.whl
bb02929b0d6bfab4c48a79bd805bd7419114606947ec8284476167415171f55b  numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f2be14ba396780a6f662b8ba1a24466c9cf18a6a386174f614668e58387a13d7  numpy-1.22.0.tar.gz
a955e4128ac36797aaffd49ab44ec74a71c11d6938df83b1285492d277db5397  numpy-1.22.0.zip

v1.21.5

Compare Source

NumPy 1.21.5 Release Notes

NumPy 1.21.5 is a maintenance release that fixes a few bugs discovered after the 1.21.4 release and does some maintenance to extend the 1.21.x lifetime. The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11, you will need to use gcc-11.2+ to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Matti Picus
  • Rohit Goswami
  • Ross Barnowski
  • Sayed Adel
  • Sebastian Berg

Pull requests merged

A total of 11 pull requests were merged for this release.

  • #​20357: MAINT: Do not forward __(deep)copy__ calls of _GenericAlias...
  • #​20462: BUG: Fix float16 einsum fastpaths using wrong tempvar
  • #​20463: BUG, DIST: Print os error message when the executable not exist
  • #​20464: BLD: Verify the ability to compile C++ sources before initiating...
  • #​20465: BUG: Force npymath to respect npy_longdouble
  • #​20466: BUG: Fix failure to create aligned, empty structured dtype
  • #​20467: ENH: provide a convenience function to replace npy_load_module
  • #​20495: MAINT: update wheel to version that supports python3.10
  • #​20497: BUG: Clear errors correctly in F2PY conversions
  • #​20613: DEV: add a warningfilter to fix pytest workflow.
  • #​20618: MAINT: Help boost::python libraries at least not crash

Checksums

MD5
e00a3c2e1461dd2920ab4af6b753d3da  numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
50e0526fa29110fb6033fa8285fba4e1  numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
bdbb19e7656d66250aa67bd1c7924764  numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
c5c982a07797c8963b8fec44aae6db09  numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b27b622f58caeeb7f14472651d655e3  numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e545f6f85f950f57606efcaeeac2e50a  numpy-1.21.5-cp310-cp310-win_amd64.whl
5c36eefdcb039c0d4db8882fddbeb695  numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
b5d080e0fd8b658419b3636f1cf5dc3a  numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
ec1a9a1333a2bf61897f105ecd9f212a  numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d5ab050300748f20cdc9c6e17ba8ffd4  numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b7498a1d0ea7273ef1af56d58e02a550  numpy-1.21.5-cp37-cp37m-win32.whl
f55c7ecfd35769fb3f6a408c0c123372  numpy-1.21.5-cp37-cp37m-win_amd64.whl
843e3431ba4b56d3fc36b7c4cb6fc10c  numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
4721e71bdc5697d310cd3a6b6cd60741  numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
2169fb8ed40046e1e33d187fc85b91bb  numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
52de43977749109509ee708a142a7d97  numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
703c0f54c5ede8cc0c648ef66cafac47  numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
50432f9cf1d5b2278ceb7a96890353ed  numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c4c5336136e045d02c60ba8115eb6a2  numpy-1.21.5-cp38-cp38-win32.whl
c2e0744164f8255be70725ef42bc3f5b  numpy-1.21.5-cp38-cp38-win_amd64.whl
b16dd7103117d051cb6c3b6c4434f7d2  numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
220dd07273aeb0b2ca8f0e4f543e43c3  numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
1dd09ad75eff93b274f650871e0b9287  numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
6801263f51d3b13420b59ff84c716869  numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
035bde3955ae2f62ada65084d71a7421  numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
09f202576cbd0ed6121cff10cdea831a  numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c6a44c90c2d5124fea6cedbbf575e252  numpy-1.21.5-cp39-cp39-win32.whl
bbc11e31406a9fc48c18a41259bc8866  numpy-1.21.5-cp39-cp39-win_amd64.whl
5be2b6f6cf6fb3a3d98231e891260624  numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8bc9ff24bac9bf4268372cefea8f0b6b  numpy-1.21.5.tar.gz
88b5438ded7992fa2e6a810d43cd32a1  numpy-1.21.5.zip
SHA256
301e408a052fdcda5cdcf03021ebafc3c6ea093021bf9d1aa47c54d48bdad166  numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
a7e8f6216f180f3fd4efb73de5d1eaefb5f5a1ee5b645c67333033e39440e63a  numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
fc7a7d7b0ed72589fd8b8486b9b42a564f10b8762be8bd4d9df94b807af4a089  numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
58ca1d7c8aef6e996112d0ce873ac9dfa1eaf4a1196b4ff7ff73880a09923ba7  numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc4b2fb01f1b4ddbe2453468ea0719f4dbb1f5caa712c8b21bb3dd1480cd30d9  numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc1b30205d138d1005adb52087ff45708febbef0e420386f58664f984ef56954  numpy-1.21.5-cp310-cp310-win_amd64.whl
08de8472d9f7571f9d51b27b75e827f5296295fa78817032e84464be8bb905bc  numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
4fe6a006557b87b352c04596a6e3f12a57d6e5f401d804947bd3188e6b0e0e76  numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
3d893b0871322eaa2f8c7072cdb552d8e2b27645b7875a70833c31e9274d4611  numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
341dddcfe3b7b6427a28a27baa59af5ad51baa59bfec3264f1ab287aa3b30b13  numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ca9c23848292c6fe0a19d212790e62f398fd9609aaa838859be8459bfbe558aa  numpy-1.21.5-cp37-cp37m-win32.whl
025b497014bc33fc23897859350f284323f32a2fff7654697f5a5fc2a19e9939  numpy-1.21.5-cp37-cp37m-win_amd64.whl
3a5098df115340fb17fc93867317a947e1dcd978c3888c5ddb118366095851f8  numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
311283acf880cfcc20369201bd75da907909afc4666966c7895cbed6f9d2c640  numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
b545ebadaa2b878c8630e5bcdb97fc4096e779f335fc0f943547c1c91540c815  numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
c5562bcc1a9b61960fc8950ade44d00e3de28f891af0acc96307c73613d18f6e  numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
eed2afaa97ec33b4411995be12f8bdb95c87984eaa28d76cf628970c8a2d689a  numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
61bada43d494515d5b122f4532af226fdb5ee08fe5b5918b111279843dc6836a  numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b9d6b14fc9a4864b08d1ba57d732b248f0e482c7b2ff55c313137e3ed4d8449  numpy-1.21.5-cp38-cp38-win32.whl
dbce7adeb66b895c6aaa1fad796aaefc299ced597f6fbd9ceddb0dd735245354  numpy-1.21.5-cp38-cp38-win_amd64.whl
507c05c7a37b3683eb08a3ff993bd1ee1e6c752f77c2f275260533b265ecdb6c  numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
00c9fa73a6989895b8815d98300a20ac993c49ac36c8277e8ffeaa3631c0dbbb  numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
69a5a8d71c308d7ef33ef72371c2388a90e3495dbb7993430e674006f94797d5  numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
2d8adfca843bc46ac199a4645233f13abf2011a0b2f4affc5c37cd552626f27b  numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c293d3c0321996cd8ffe84215ffe5d269fd9d1d12c6f4ffe2b597a7c30d3e593  numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
3c978544be9e04ed12016dd295a74283773149b48f507d69b36f91aa90a643e5  numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2a9add27d7fc0fdb572abc3b2486eb3b1395da71e0254c5552b2aad2a18b5441  numpy-1.21.5-cp39-cp39-win32.whl
1964db2d4a00348b7a60ee9d013c8cb0c566644a589eaa80995126eac3b99ced  numpy-1.21.5-cp39-cp39-win_amd64.whl
a7c4b701ca418cd39e28ec3b496e6388fe06de83f5f0cb74794fa31cfa384c02  numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
1a7ee0ffb35dc7489aebe5185a483f4c43b0d2cf784c3c9940f975a7dde56506  numpy-1.21.5.tar.gz
6a5928bc6241264dce5ed509e66f33676fc97f464e7a919edc672fb5532221ee  numpy-1.21.5.zip

v1.21.4

Compare Source

NumPy 1.21.4 Release Notes

The NumPy 1.21.4 is a maintenance release that fixes a few bugs discovered after 1.21.3. The most important fix here is a fix for the NumPy header files to make them work for both x86_64 and M1 hardware when included in the Mac universal2 wheels. Previously, the header files only worked for M1 and this caused problems for folks building x86_64 extensions. This problem was not seen before Python 3.10 because there were thin wheels for x86_64 that had precedence. This release also provides thin x86_64 Mac wheels for Python 3.10.

The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11, you will need to use gcc-11.2+ to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Isuru Fernando
  • Matthew Brett
  • Sayed Adel
  • Sebastian Berg
  • 傅立业(Chris Fu) +

Pull requests merged

A total of 9 pull requests were merged for this release.

  • #​20278: BUG: Fix shadowed reference of dtype in type stub
  • #​20293: BUG: Fix headers for universal2 builds
  • #​20294: BUG: VOID_nonzero could sometimes mutate alignment flag
  • #​20295: BUG: Do not use nonzero fastpath on unaligned arrays
  • #​20296: BUG: Distutils patch to allow for 2 as a minor version (!)
  • #​20297: BUG, SIMD: Fix 64-bit/8-bit integer division by a scalar
  • #​20298: BUG, SIMD: Workaround broadcasting SIMD 64-bit integers on MSVC...
  • #​20300: REL: Prepare for the NumPy 1.21.4 release.
  • #​20302: TST: Fix a Arrayterator typing test failure

Checksums

MD5
95486a3ed027c926fb3fc279db6d843e  numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
9f57fad74762f7665669af33583a3dc9  numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
719a9053aef01a067ce44ede2281eef9  numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
72035d101774fd03beff391927f59aa9  numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5813e7a378a6e3f5c269c23f61eff4d9  numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b88a1bc4f08dfb154d5a07d15e387af6  numpy-1.21.4-cp310-cp310-win_amd64.whl
f0cc946d2f4ab4df7cc7e0cc8cfd429e  numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
1234643306ce481f0e5f801ddf3f1099  numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
b9208ce1695ba61ab2932c7ce7285d1d  numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9804fe2011618bf2d7b8d92f6860b2e3  numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ad3a06f974acd61326fd66c098df5bc  numpy-1.21.4-cp37-cp37m-win32.whl
172301389f1532b2d9130362580e1e22  numpy-1.21.4-cp37-cp37m-win_amd64.whl
a037bf88979ae0d4699a0cdce92bbab3  numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
ba94609688f575cc8dce84f1512db116  numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
c78edc0ae8c9a5d8d0f9e3eb6dabd0b3  numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
d683b6f6af46806391579d528a040451  numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
df631f776716aeb3fd705f3659599b9e  numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b1cbca49d24c7ba43d377feb425afdce  numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b5c214bc0f060dbb0287c15dde4673d  numpy-1.21.4-cp38-cp38-win32.whl
2307cf9f3c02f6cdad448a681c272974  numpy-1.21.4-cp38-cp38-win_amd64.whl
fc02b5a068e29b2dd2de19c7ddd69926  numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
f16068540001de8a3d8f096830c97ea2  numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
80562c39cfbdf1af9bb43b2ea5e45b6d  numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
6c103bec3085e5a6ea92cf7f6e4189ab  numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
9d715ba5f7596a39eb631f2dae85d203  numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8b8cf8c7b093419ff75ed1dd2eaa18ae  numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
404200b858b7addd03f6cdd5a484d30a  numpy-1.21.4-cp39-cp39-win32.whl
cdab6a1bf1b86021526d08a60219a6ad  numpy-1.21.4-cp39-cp39-win_amd64.whl
70ca6b591e844fdcb8c22175f094d3b4  numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
06019c1116b3e2791bd507f898257e7f  numpy-1.21.4.tar.gz
b3c4477a027d5b6fba5e1065064fd076  numpy-1.21.4.zip
SHA256
8890b3360f345e8360133bc078d2dacc2843b6ee6059b568781b15b97acbe39f  numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
69077388c5a4b997442b843dbdc3a85b420fb693ec8e33020bb24d647c164fa5  numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
e89717274b41ebd568cd7943fc9418eeb49b1785b66031bc8a7f6300463c5898  numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
0b78ecfa070460104934e2caf51694ccd00f37d5e5dbe76f021b1b0b0d221823  numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
615d4e328af7204c13ae3d4df7615a13ff60a49cb0d9106fde07f541207883ca  numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1403b4e2181fc72664737d848b60e65150f272fe5a1c1cbc16145ed43884065a  numpy-1.21.4-cp310-cp310-win_amd64.whl
74b85a17528ca60cf98381a5e779fc0264b4a88b46025e6bcbe9621f46bb3e63  numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
92aafa03da8658609f59f18722b88f0a73a249101169e28415b4fa148caf7e41  numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
5d95668e727c75b3f5088ec7700e260f90ec83f488e4c0aaccb941148b2cd377  numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f5162ec777ba7138906c9c274353ece5603646c6965570d82905546579573f73  numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
81225e58ef5fce7f1d80399575576fc5febec79a8a2742e8ef86d7b03beef49f  numpy-1.21.4-cp37-cp37m-win32.whl
32fe5b12061f6446adcbb32cf4060a14741f9c21e15aaee59a207b6ce6423469  numpy-1.21.4-cp37-cp37m-win_amd64.whl
c449eb870616a7b62e097982c622d2577b3dbc800aaf8689254ec6e0197cbf1e  numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
2e4ed57f45f0aa38beca2a03b6532e70e548faf2debbeb3291cfc9b315d9be8f  numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
1247ef28387b7bb7f21caf2dbe4767f4f4175df44d30604d42ad9bd701ebb31f  numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
34f3456f530ae8b44231c63082c8899fe9c983fd9b108c997c4b1c8c2d435333  numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
4c9c23158b87ed0e70d9a50c67e5c0b3f75bcf2581a8e34668d4e9d7474d76c6  numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e4799be6a2d7d3c33699a6f77201836ac975b2e1b98c2a07f66a38f499cb50ce  numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bc988afcea53e6156546e5b2885b7efab089570783d9d82caf1cfd323b0bb3dd  numpy-1.21.4-cp38-cp38-win32.whl
170b2a0805c6891ca78c1d96ee72e4c3ed1ae0a992c75444b6ab20ff038ba2cd  numpy-1.21.4-cp38-cp38-win_amd64.whl
fde96af889262e85aa033f8ee1d3241e32bf36228318a61f1ace579df4e8170d  numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
c885bfc07f77e8fee3dc879152ba993732601f1f11de248d4f357f0ffea6a6d4  numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
9e6f5f50d1eff2f2f752b3089a118aee1ea0da63d56c44f3865681009b0af162  numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
ad010846cdffe7ec27e3f933397f8a8d6c801a48634f419e3d075db27acf5880  numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c74c699b122918a6c4611285cc2cad4a3aafdb135c22a16ec483340ef97d573c  numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9864424631775b0c052f3bd98bc2712d131b3e2cd95d1c0c68b91709170890b0  numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b1e2312f5b8843a3e4e8224b2b48fe16119617b8fc0a54df8f50098721b5bed2  numpy-1.21.4-cp39-cp39-win32.whl
e3c3e990274444031482a31280bf48674441e0a5b55ddb168f3a6db3e0c38ec8  numpy-1.21.4-cp39-cp39-win_amd64.whl
a3deb31bc84f2b42584b8c4001c85d1934dbfb4030827110bc36bfd11509b7bf  numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
5d412381aa489b8be82ac5c6a9e99c3eb3f754245ad3f90ab5c339d92f25fb47  numpy-1.21.4.tar.gz
e6c76a87633aa3fa16614b61ccedfae45b91df2767cf097aa9c933932a7ed1e0  numpy-1.21.4.zip

v1.21.3

Compare Source

NumPy 1.21.3 Release Notes

The NumPy 1.21.3 is a maintenance release the fixes a few bugs discovered after 1.21.2. It also provides 64 bit Python 3.10.0 wheels. Note a few oddities about Python 3.10:

  • There are no 32 bit wheels for Windows, Mac, or Linux.
  • The Mac Intel builds are only available in universal2 wheels.

The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11 you will need to use gcc-11.2+ to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Aaron Meurer
  • Bas van Beek
  • Charles Harris
  • Developer-Ecosystem-Engineering +
  • Kevin Sheppard
  • Sebastian Berg
  • Warren Weckesser

Pull requests merged

A total of 8 pull requests were merged for this release.

  • #​19745: ENH: Add dtype-support to 3 `generic/ndarray methods
  • #​19955: BUG: Resolve Divide by Zero on Apple silicon + test failures...
  • #​19958: MAINT: Mark type-check-only ufunc subclasses as ufunc aliases...
  • #​19994: BUG: np.tan(np.inf) test failure
  • #​20080: BUG: Correct incorrect advance in PCG with emulated int128
  • #​20081: BUG: Fix NaT handling in the PyArray_CompareFunc for datetime...
  • #​20082: DOC: Ensure that we add documentation also as to the dict for...
  • #​20106: BUG: core: result_type(0, np.timedelta64(4)) would seg. fault.

Checksums

MD5
9acea9630856659ba48fdb582ecc37b4  numpy-1.21.3-cp310-cp310-macosx_10_9_universal2.whl
a70f80a4e74a3153a8307c4f0ea8d13d  numpy-1.21.3-cp310-cp310-macosx_11_0_arm64.whl
13cfe83efd261ea1c3d1eb02c1d3af83  numpy-1.21.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8576bfd867834182269f72abbaa2e81e  numpy-1.21.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8ac48f503f1e22c0c2b5d056772aca27  numpy-1.21.3-cp310-cp310-win_amd64.whl
cbe0d0d7623de3c2c7593f673d1a880a  numpy-1.21.3-cp37-cp37m-macosx_10_9_x86_64.whl
0967b18baba13e511c7eb48902a62b39  numpy-1.21.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
da54c9566f3e3f8c7d60efebfdf7e1ae  numpy-1.21.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
0aa000f3c10cf74bf47770577384b5c8  numpy-1.21.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5683501bf91be25c53c52e3b083098c3  numpy-1.21.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
89e15d979533f8a314e0ab0648ee7153  numpy-1.21.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
a093fea475b5ed18bd21b3c79e68e388  numpy-1.21.3-cp37-cp37m-win32.whl
f906001213ed0902b1aecfaa12224e94  numpy-1.21.3-cp37-cp37m-win_amd64.whl
88a2cd378412220d618473dd273baf04  numpy-1.21.3-cp38-cp38-macosx_10_9_universal2.whl
1bc55202f604e30f338bc2ed27b561bc  numpy-1.21.3-cp38-cp38-macosx_10_9_x86_64.whl
9555dc6de8748958434e8f2feba98494  numpy-1.21.3-cp38-cp38-macosx_11_0_arm64.whl
93ad32cc87866e9242156bdadc61e5f5  numpy-1.21.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
7cb0b7dd6aee667ecdccae1829260186  numpy-1.21.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
34e6f5f9e9534ef8772f024170c2bd2d  numpy-1.21.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54e6abfb8f600de2ccd1649b1fca820b  numpy-1.21.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
260ba58f2dc64e779eac7318ec92f36c  numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
889202c6bdaf8c1ae0803925e9e1a8f7  numpy-1.21.3-cp38-cp38-win32.whl
980303a7e6317faf9a56ba8fc80795d9  numpy-1.21.3-cp38-cp38-win_amd64.whl
44d6bd26fb910710ab4002d0028c9020  numpy-1.21.3-cp39-cp39-macosx_10_9_universal2.whl
6f5b02152bd0b08a77b79657788ce59c  numpy-1.21.3-cp39-cp39-macosx_10_9_x86_64.whl
ad05d5c412d15e7880cd65cc6cdd4aac  numpy-1.21.3-cp39-cp39-macosx_11_0_arm64.whl
5b61a91221931af4a78c3bd20925a91f  numpy-1.21.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
df7344ae04c5a54249fa1b63a256ce61  numpy-1.21.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
c653a096da47b64b42e8f1536a21f7d4  numpy-1.21.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d35451ba1c37f96e032bc6f75ccdf7  numpy-1.21.3-cp39-cp39-win32.whl
b2e1dc59b6fa224ce11728d94be740a6  numpy-1.21.3-cp39-cp39-win_amd64.whl
8ce925a0fcbc1062985026215d369276  numpy-1.21.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b8e6b7165f105bde0b45cd9ae34bfe20  numpy-1.21.3.tar.gz
59d986f5ccf3edfb7d4d14949c6666ed  numpy-1.21.3.zip
SHA256
508b0b513fa1266875524ba8a9ecc27b02ad771fe1704a16314dc1a816a68737  numpy-1.21.3-cp310-cp310-macosx_10_9_universal2.whl
5dfe9d6a4c39b8b6edd7990091fea4f852888e41919d0e6722fe78dd421db0eb  numpy-1.21.3-cp310-cp310-macosx_11_0_arm64.whl
8a10968963640e75cc0193e1847616ab4c718e83b6938ae74dea44953950f6b7  numpy-1.21.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
49c6249260890e05b8111ebfc391ed58b3cb4b33e63197b2ec7f776e45330721  numpy-1.21.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8f4625536926a155b80ad2bbff44f8cc59e9f2ad14cdda7acf4c135b4dc8ff2  numpy-1.21.3-cp310-cp310-win_amd64.whl
e54af82d68ef8255535a6cdb353f55d6b8cf418a83e2be3569243787a4f4866f  numpy-1.21.3-cp37-cp37m-macosx_10_9_x86_64.whl
f41b018f126aac18583956c54544db437f25c7ee4794bcb23eb38bef8e5e192a  numpy-1.21.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
50cd26b0cf6664cb3b3dd161ba0a09c9c1343db064e7c69f9f8b551f5104d654  numpy-1.21.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
4cc9b512e9fb590797474f58b7f6d1f1b654b3a94f4fa8558b48ca8b3cfc97cf  numpy-1.21.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88a5d6b268e9ad18f3533e184744acdaa2e913b13148160b1152300c949bbb5f  numpy-1.21.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
3c09418a14471c7ae69ba682e2428cae5b4420a766659605566c0fa6987f6b7e  numpy-1.21.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
90bec6a86b348b4559b6482e2b684db4a9a7eed1fa054b86115a48d58fbbf62a  numpy-1.21.3-cp37-cp37m-win32.whl
043e83bfc274649c82a6f09836943e4a4aebe5e33656271c7dbf9621dd58b8ec  numpy-1.21.3-cp37-cp37m-win_amd64.whl
75621882d2230ab77fb6a03d4cbccd2038511491076e7964ef87306623aa5272  numpy-1.21.3-cp38-cp38-macosx_10_9_universal2.whl
188031f833bbb623637e66006cf75e933e00e7231f67e2b45cf8189612bb5dc3  numpy-1.21.3-cp38-cp38-macosx_10_9_x86_64.whl
160ccc1bed3a8371bf0d760971f09bfe80a3e18646620e9ded0ad159d9749baa  numpy-1.21.3-cp38-cp38-macosx_11_0_arm64.whl
29fb3dcd0468b7715f8ce2c0c2d9bbbaf5ae686334951343a41bd8d155c6ea27  numpy-1.21.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
32437f0b275c1d09d9c3add782516413e98cd7c09e6baf4715cbce781fc29912  numpy-1.21.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e606e6316911471c8d9b4618e082635cfe98876007556e89ce03d52ff5e8fcf0  numpy-1.21.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a99a6b067e5190ac6d12005a4d85aa6227c5606fa93211f86b1dafb16233e57d  numpy-1.21.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
dde972a1e11bb7b702ed0e447953e7617723760f420decb97305e66fb4afc54f  numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
fe52dbe47d9deb69b05084abd4b0df7abb39a3c51957c09f635520abd49b29dd  numpy-1.21.3-cp38-cp38-win32.whl
75eb7cadc8da49302f5b659d40ba4f6d94d5045fbd9569c9d058e77b0514c9e4  numpy-1.21.3-cp38-cp38-win_amd64.whl
2a6ee9620061b2a722749b391c0d80a0e2ae97290f1b32e28d5a362e21941ee4  numpy-1.21.3-cp39-cp39-macosx_10_9_universal2.whl
5c4193f70f8069550a1788bd0cd3268ab7d3a2b70583dfe3b2e7f421e9aace06  numpy-1.21.3-cp39-cp39-macosx_10_9_x86_64.whl
28f15209fb535dd4c504a7762d3bc440779b0e37d50ed810ced209e5cea60d96  numpy-1.21.3-cp39-cp39-macosx_11_0_arm64.whl
c6c2d535a7beb1f8790aaa98fd089ceab2e3dd7ca48aca0af7dc60e6ef93ffe1  numpy-1.21.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bffa2eee3b87376cc6b31eee36d05349571c236d1de1175b804b348dc0941e3f  numpy-1.21.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
cc14e7519fab2a4ed87d31f99c31a3796e4e1fe63a86ebdd1c5a1ea78ebd5896  numpy-1.21.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd0482f3fc547f1b1b5d6a8b8e08f63fdc250c58ce688dedd8851e6e26cff0f3  numpy-1.21.3-cp39-cp39-win32.whl
300321e3985c968e3ae7fbda187237b225f3ffe6528395a5b7a5407f73cf093e  numpy-1.21.3-cp39-cp39-win_amd64.whl
98339aa9911853f131de11010f6dd94c8cec254d3d1f7261528c3b3e3219f139  numpy-1.21.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d0bba24083c01ae43457514d875f10d9ce4c1125d55b1e2573277b2410f2d068  numpy-1.21.3.tar.gz
63571bb7897a584ca3249c86dd01c10bcb5fe4296e3568b2e9c1a55356b6410e  numpy-1.21.3.zip

v1.21.2

Compare Source

NumPy 1.21.2 Release Notes

The NumPy 1.21.2 is maintenance release that fixes bugs discovered after 1.21.1. It also provides 64 bit manylinux Python 3.10.0rc1 wheels for downstream testing. Note that Python 3.10 is not yet final. There is also preliminary support for Windows on ARM64 builds, but there is no OpenBLAS for that platform and no wheels are available.

The Python versions supported for this release are 3.7-3.9. The 1.21.x series is compatible with Python 3.10.0rc1 and Python 3.10 will be officially supported after it is released. The previous problems with gcc-11.1 have been fixed by gcc-11.2, check your version if you are using gcc-11.

Contributors

A total of 10 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Bas van Beek
  • Carl Johnsen +
  • Charles Harris
  • Gwyn Ciesla +
  • Matthieu Dartiailh
  • Matti Picus
  • Niyas Sait +
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg

Pull requests merged

A total of 18 pull requests were merged for this release.

  • #​19497: MAINT: set Python version for 1.21.x to <3.11
  • #​19533: BUG: Fix an issue wherein importing numpy.typing could raise
  • #​19646: MAINT: Update Cython version for Python 3.10.
  • #​19648: TST: Bump the python 3.10 test version from beta4 to rc1
  • #​19651: TST: avoid distutils.sysconfig in runtests.py
  • #​19652: MAINT: add missing dunder method to nditer type hints
  • #​19656: BLD, SIMD: Fix testing extra checks when -Werror isn't applicable...
  • #​19657: BUG: Remove logical object ufuncs with bool output
  • #​19658: MAINT: Include .coveragerc in source distributions to support...
  • #​19659: BUG: Fix bad write in masked iterator output copy paths
  • #​19660: ENH: Add support for windows on arm targets
  • #​19661: BUG: add base to templated arguments for platlib
  • #​19662: BUG,DEP: Non-default UFunc signature/dtype usage should be deprecated
  • #​19666: MAINT: Add Python 3.10 to supported versions.
  • #​19668: TST,BUG: Sanitize path-separators when running runtest.py
  • #​19671: BLD: load extra flags when checking for libflame
  • #​19676: BLD: update circleCI docker image
  • #​19677: REL: Prepare for 1.21.2 release.

Checksums

MD5
c4d72c5f8aff59b5e48face558441e9f  numpy-1.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eb09d0bfc0bc39ce3e323182ae779fcb  numpy-1.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e0bb19ea8cc13a5152085aa42d850077  numpy-1.21.2-cp37-cp37m-macosx_10_9_x86_64.whl
af7d21992179dfa3669a2a238b94a980  numpy-1.21.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
9acbaf0074af75d66ca8676b16cec03a  numpy-1.21.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
86b755c7ece248e5586a6a58259aa432  numpy-1.21.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b45fbbb0ffabcabcc6dc4cf957713d45  numpy-1.21.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
6f23a3050b1482f9708d36928348d75d  numpy-1.21.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
ee45e263e6700b745c43511297385fe1  numpy-1.21.2-cp37-cp37m-win32.whl
6f587dc9ee9ec8700e77df4f3f987911  numpy-1.21.2-cp37-cp37m-win_amd64.whl
e500c1eae3903b7498886721b835d086  numpy-1.21.2-cp38-cp38-macosx_10_9_universal2.whl
ddef2b45ff5526e6314205108f2e3524  numpy-1.21.2-cp38-cp38-macosx_10_9_x86_64.whl
66b5a212ee2fe747cfc19f13dbfc2d15  numpy-1.21.2-cp38-cp38-macosx_11_0_arm64.whl
3ebfe9bcd744c57d3d189394fbbf04de  numpy-1.21.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
155a35f990b2e673cb7b361c83fa2313  numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
89e2268d8607b6b363337fafde9fe6c9  numpy-1.21.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e13968b5f61a3b2f33d4053da8ceaaf1  numpy-1.21.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
5bede1a84624d538d97513006f97fc06  numpy-1.21.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
351b5115ee56f1b598bfa9b479a2492c  numpy-1.21.2-cp38-cp38-win32.whl
8a36334d9d183b1ef3e4d3d23b7d0cb8  numpy-1.21.2-cp38-cp38-win_amd64.whl
b6aee8cf57f84da10b38566bde93056c  numpy-1.21.2-cp39-cp39-macosx_10_9_universal2.whl
20beaff42d793cb148621e0230d1b650  numpy-1.21.2-cp39-cp39-macosx_10_9_x86_64.whl
6e348361f3b8b75267dc27f3a6530944  numpy-1.21.2-cp39-cp39-macosx_11_0_arm64.whl
809bcd25dc485f31e2c13903d6ac748e  numpy-1.21.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
ff4256d8940c6bdce48364af37f99072  numpy-1.21.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b8b19e6667e39feef9f7f2e030945199  numpy-1.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eedae53f1929779387476e7842dc5cb3  numpy-1.21.2-cp39-cp39-win32.whl
704f66b7ede6778283c33eea7a5b8b95  numpy-1.21.2-cp39-cp39-win_amd64.whl
8c5d2a0172f6f6861833a355b1bc57b0  numpy-1.21.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
55c11984b0a0ae28baa118052983f355  numpy-1.21.2.tar.gz
5638d5dae3ca387be562912312db842e  numpy-1.21.2.zip
SHA256
52a664323273c08f3b473548bf87c8145b7513afd63e4ebba8496ecd3853df13  numpy-1.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
51a7b9db0a2941434cd930dacaafe0fc9da8f3d6157f9d12f761bbde93f46218  numpy-1.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9f2dc79c093f6c5113718d3d90c283f11463d77daa4e83aeeac088ec6a0bda52  numpy-1.21.2-cp37-cp37m-macosx_10_9_x86_64.whl
a55e4d81c4260386f71d22294795c87609164e22b28ba0d435850fbdf82fc0c5  numpy-1.21.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
426a00b68b0d21f2deb2ace3c6d677e611ad5a612d2c76494e24a562a930c254  numpy-1.21.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
298156f4d3d46815eaf0fcf0a03f9625fc7631692bd1ad851517ab93c3168fc6  numpy-1.21.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
09858463db6dd9f78b2a1a05c93f3b33d4f65975771e90d2cf7aadb7c2f66edf  numpy-1.21.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
805459ad8baaf815883d0d6f86e45b3b0b67d823a8f3fa39b1ed9c45eaf5edf1  numpy-1.21.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
f545c082eeb09ae678dd451a1b1dbf17babd8a0d7adea02897a76e639afca310  numpy-1.21.2-cp37-cp37m-win32.whl
b160b9a99ecc6559d9e6d461b95c8eec21461b332f80267ad2c10394b9503496  numpy-1.21.2-cp37-cp37m-win_amd64.whl
a5109345f5ce7ddb3840f5970de71c34a0ff7fceb133c9441283bb8250f532a3  numpy-1.21.2-cp38-cp38-macosx_10_9_universal2.whl
209666ce9d4a817e8a4597cd475b71b4878a85fa4b8db41d79fdb4fdee01dde2  numpy-1.21.2-cp38-cp38-macosx_10_9_x86_64.whl
c01b59b33c7c3ba90744f2c695be571a3bd40ab2ba7f3d169ffa6db3cfba614f  numpy-1.21.2-cp38-cp38-macosx_11_0_arm64.whl
e42029e184008a5fd3d819323345e25e2337b0ac7f5c135b7623308530209d57  numpy-1.21.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
7fdc7689daf3b845934d67cb221ba8d250fdca20ac0334fea32f7091b93f00d3  numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
550564024dc5ceee9421a86fc0fb378aa9d222d4d0f858f6669eff7410c89bef  numpy-1.21.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bf75d5825ef47aa51d669b03ce635ecb84d69311e05eccea083f31c7570c9931  numpy-1.21.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
a9da45b748caad72ea4a4ed57e9cd382089f33c5ec330a804eb420a496fa760f  numpy-1.21.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
e167b9805de54367dcb2043519382be541117503ce99e3291cc9b41ca0a83557  numpy-1.21.2-cp38-cp38-win32.whl
466e682264b14982012887e90346d33435c984b7fead7b85e634903795c8fdb0  numpy-1.21.2-cp38-cp38-win_amd64.whl
dd0e3651d210068d13e18503d75aaa45656eef51ef0b261f891788589db2cc38  numpy-1.21.2-cp39-cp39-macosx_10_9_universal2.whl
92a0ab128b07799dd5b9077a9af075a63467d03ebac6f8a93e6440abfea4120d  numpy-1.21.2-cp39-cp39-macosx_10_9_x86_64.whl
fde50062d67d805bc96f1a9ecc0d37bfc2a8f02b937d2c50824d186aa91f2419  numpy-1.21.2-cp39-cp39-macosx_11_0_arm64.whl
640c1ccfd56724f2955c237b6ccce2e5b8607c3bc1cc51d3933b8c48d1da3723  numpy-1.21.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
5de64950137f3a50b76ce93556db392e8f1f954c2d8207f78a92d1f79aa9f737  numpy-1.21.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b342064e647d099ca765f19672696ad50c953cac95b566af1492fd142283580f  numpy-1.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
30fc68307c0155d2a75ad19844224be0f2c6f06572d958db4e2053f816b859ad  numpy-1.21.2-cp39-cp39-win32.whl
b5e8590b9245803c849e09bae070a8e1ff444f45e3f0bed558dd722119eea724  numpy-1.21.2-cp39-cp39-win_amd64.whl
d96a6a7d74af56feb11e9a443150216578ea07b7450f7c05df40eec90af7f4a7  numpy-1.21.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
76af194fbc117934ec5bbe2ff15177adbd05aeed23f18ee209ed88edcd777e05  numpy-1.21.2.tar.gz
423216d8afc5923b15df86037c6053bf030d15cc9e3224206ef868c2d63dd6dc  numpy-1.21.2.zip

v1.21.1

Compare Source

NumPy 1.21.1 Release Notes

The NumPy 1.21.1 is maintenance release that fixes bugs discovered after the 1.21.0 release and updates OpenBLAS to v0.3.17 to deal with problems on arm64.

The Python versions supported for this release are 3.7-3.9. The 1.21.x series is compatible with development Python 3.10. Python 3.10 will be officially supported after it is released.

There are unresolved problems compiling NumPy 1.20.0 with gcc-11.1.

  • Optimization level -O3 results in many incorrect warnings when running the tests.
  • On some hardware NumPY will hang in an infinite loop.

Contributors

A total of 11 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Ganesh Kathiresan
  • Gregory R. Lee
  • Hugo Defois +
  • Kevin Sheppard
  • Matti Picus
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg
  • Thomas J. Fan

Pull requests merged

A total of 26 pull requests were merged for this release.

  • #​19311: REV,BUG: Replace NotImplemented with typing.Any
  • #​19324: MAINT: Fixed the return-dtype of ndarray.real and imag
  • #​19330: MAINT: Replace "dtype[Any]" with dtype in the definiton of...
  • #​19342: DOC: Fix some docstrings that crash pdf generation.
  • #​19343: MAINT: bump scipy-mathjax
  • #​19347: BUG: Fix arr.flat.index for large arrays and big-endian machines
  • #​19348: ENH: add numpy.f2py.get_include function
  • #​19349: BUG: Fix reference count leak in ufunc dtype handling
  • #​19350: MAINT: Annotate missing attributes of np.number subclasses
  • #​19351: BUG: Fix cast safety and comparisons for zero sized voids
  • #​19352: BUG: Correct Cython declaration in random
  • #​19353: BUG: protect against accessing base attribute of a NULL subarray
  • #​19365: BUG, SIMD: Fix detecting AVX512 features on Darwin
  • #​19366: MAINT: remove print()'s in distutils template handling
  • #​19390: ENH: SIMD architectures to show_config
  • #​19391: BUG: Do not raise deprecation warning for all nans in unique...
  • #​19392: BUG: Fix NULL special case in object-to-any cast code
  • #​19430: MAINT: Use arm64-graviton2 for testing on travis
  • #​19495: BUILD: update OpenBLAS to v0.3.17
  • #​19496: MAINT: Avoid unicode characters in division SIMD code comments
  • #​19499: BUG, SIMD: Fix infinite loop during count non-zero on GCC-11
  • #​19500: BUG: fix a numpy.npiter leak in npyiter_multi_index_set
  • #​19501: TST: Fix a GenericAlias test failure for python 3.9.0
  • #​19502: MAINT: Start testing with Python 3.10.0b3.
  • #​19503: MAINT: Add missing dtype overloads for object- and ctypes-based...
  • #​19510: REL: Prepare for NumPy 1.21.1 release.

Checksums

MD5
d88af78c155cb92ce5535724ed13ed73  numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl
946e54ec9d174ec90db8ae07a4c4ae2f  numpy-1.21.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
84d7f8534fa3ce1a8c2e2eab18e514de  numpy-1.21.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
2e256d7862047967f2a7dbff8b8e9d6c  numpy-1.21.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4887ff09cc0652f3f1d9e0f40d1add63  numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
bbe00679ce0ae484bb46776f64e00e32  numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
b8eff5ba6bb920f3e65409abcfe7a55e  numpy-1.21.1-cp37-cp37m-win32.whl
d6ab781ad4537a818663a37392bdf647  numpy-1.21.1-cp37-cp37m-win_amd64.whl
f974f7a90567e082b16817e1218eb059  numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl
37fb814042195516db4c5eedc23f65ef  numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl
2840e0ed51c8ebfb6fded7f1acfed810  numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl
d87ed548450f324a3a6a3a230991e90a  numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
e5e0e271fb18986887920f24b9ad8ec3  numpy-1.21.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f060727f195388df3f3c1e2c43a8d247  numpy-1.21.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
26b0cc05d6f59241f401c16a6fe9300e  numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
dac4489fdaeffd24d402a555e61b4087  numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
c248a8f07bb458660274eab769dcc1e2  numpy-1.21.1-cp38-cp38-win32.whl
52386872b66b108de80b5447d0e3f6b1  numpy-1.21.1-cp38-cp38-win_amd64.whl
1a730aa7303421f31c2bca5a343010bb  numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl
141701393752d472456d4a15f9a554e4  numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl
33a9c001675f708aebc06f0a653378c1  numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl
6b9482c5090f532285313ad2cf48d319  numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
94fa7591ad4e51a85cb17bcec170b986  numpy-1.21.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f580b2ce2fb9cead163bab3f1d88fba7  numpy-1.21.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
238930d877b5d8a012b5b1bbc994ebb1  numpy-1.21.1-cp39-cp39-win32.whl
4014c63ac2a1c3e1df95f76feb14816e  numpy-1.21.1-cp39-cp39-win_amd64.whl
7cff22c1a04fdee710d38bd9468edbf1  numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
033726e7ec59eea6b23307dcec35a37b  numpy-1.21.1.tar.gz
1d016e05851a4ba85307f3246eb569aa  numpy-1.21.1.zip
SHA256
38e8648f9449a549a7dfe8d8755a5979b45b3538520d1e735637ef28e8c2dc50  numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl
fd7d7409fa643a91d0a05c7554dd68aa9c9bb16e186f6ccfe40d6e003156e33a  numpy-1.21.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
a75b4498b1e93d8b700282dc8e655b8bd559c0904b3910b144646dbbbc03e062  numpy-1.21.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
1412aa0aec3e00bc23fbb8664d76552b4efde98fb71f60737c83efbac24112f1  numpy-1.21.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e46ceaff65609b5399163de5893d8f2a82d3c77d5e56d976c8b5fb01faa6b671  numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
c6a2324085dd52f96498419ba95b5777e40b6bcbc20088fddb9e8cbb58885e8e  numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
73101b2a1fef16602696d133db402a7e7586654682244344b8329cdcbbb82172  numpy-1.21.1-cp37-cp37m-win32.whl
7a708a79c9a9d26904d1cca8d383bf869edf6f8e7650d85dbc77b041e8c5a0f8  numpy-1.21.1-cp37-cp37m-win_amd64.whl
95b995d0c413f5d0428b3f880e8fe1660ff9396dcd1f9eedbc311f37b5652e16  numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl
635e6bd31c9fb3d475c8f44a089569070d10a9ef18ed13738b03049280281267  numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl
4a3d5fb89bfe21be2ef47c0614b9c9c707b7362386c9a3ff1feae63e0267ccb6  numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl
8a326af80e86d0e9ce92bcc1e65c8ff88297de4fa14ee936cb2293d414c9ec63  numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
791492091744b0fe390a6ce85cc1bf5149968ac7d5f0477288f78c89b385d9af  numpy-1.21.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
0318c465786c1f63ac05d7c4dbcecd4d2d7e13f0959b01b534ea1e92202235c5  numpy-1.21.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9a513bd9c1551894ee3d31369f9b07460ef223694098cf27d399513415855b68  numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
91c6f5fc58df1e0a3cc0c3a717bb3308ff850abdaa6d2d802573ee2b11f674a8  numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
978010b68e17150db8765355d1ccdd450f9fc916824e8c4e35ee620590e234cd  numpy-1.21.1-cp38-cp38-win32.whl
9749a40a5b22333467f02fe11edc98f022133ee1bfa8ab99bda5e5437b831214  numpy-1.21.1-cp38-cp38-win_amd64.whl
d7a4aeac3b94af92a9373d6e77b37691b86411f9745190d2c351f410ab3a791f  numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl
d9e7912a56108aba9b31df688a4c4f5cb0d9d3787386b87d504762b6754fbb1b  numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl
25b40b98ebdd272bc3020935427a4530b7d60dfbe1ab9381a39147834e985eac  numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl
8a92c5aea763d14ba9d6475803fc7904bda7decc2a0a68153f587ad82941fec1  numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
05a0f648eb28bae4bcb204e6fd14603de2908de982e761a2fc78efe0f19e96e1  numpy-1.21.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f01f28075a92eede918b965e86e8f0ba7b7797a95aa8d35e1cc8821f5fc3ad6a  numpy-1.21.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88c0b89ad1cc24a5efbb99ff9ab5db0f9a86e9cc50240177a571fbe9c2860ac2  numpy-1.21.1-cp39-cp39-win32.whl
01721eefe70544d548425a07c80be8377096a54118070b8a62476866d5208e33  numpy-1.21.1-cp39-cp39-win_amd64.whl
2d4d1de6e6fb3d28781c73fbde702ac97f03d79e4ffd6598b880b2d95d62ead4  numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
504ced5d900fd5724c74ebf5dbb03572c04074bec9baa24b5646c66a2450e654  numpy-1.21.1.tar.gz
dff4af63638afcc57a3dfb9e4b26d434a7a602d225b42d746ea7fe2edf1342fd  numpy-1.21.1.zip

v1.21.0

Compare Source

NumPy 1.21.0 Release Notes

The NumPy 1.21.0 release highlights are

  • continued SIMD work covering more functions and platforms,
  • initial work on the new dtype infrastructure and casting,
  • universal2 wheels for Python 3.8 and Python 3.9 on Mac,
  • improved documentation,
  • improved annotations,
  • new PCG64DXSM bitgenerator for random numbers.

In addition there are the usual large number of bug fixes and other improvements.

The Python versions supported for this release are 3.7-3.9. Official support for Python 3.10 will be added when it is released.

Warning: there are unresolved problems compiling NumPy 1.21.0 with gcc-11.1 .

  • Optimization level -O3 results in many wrong warnings when running the tests.
  • On some hardware NumPy will hang in an infinite loop.

New functions

Add PCG64DXSM BitGenerator

Uses of the PCG64 BitGenerator in a massively-parallel context have been shown to have statistical weaknesses that were not apparent at the first release in numpy 1.17. Most users will never observe this weakness and are safe to continue to use PCG64. We have introduced a new PCG64DXSM BitGenerator that will eventually become the new default BitGenerator implementation used by default_rng in future releases. PCG64DXSM solves the statistical weakness while preserving the performance and the features of PCG64.

See upgrading-pcg64 for more details.

(gh-18906)

Expired deprecations

  • The shape argument numpy.unravel_index cannot be passed as dims keyword argument anymore. (Was deprecated in NumPy 1.16.)

    (gh-17900)

  • The function PyUFunc_GenericFunction has been disabled. It was deprecated in NumPy 1.19. Users should call the ufunc directly using the Python API.

    (gh-18697)

  • The function PyUFunc_SetUsesArraysAsData has been disabled. It was deprecated in NumPy 1.19.

    (gh-18697)

  • The class PolyBase has been removed (deprecated in numpy 1.9.0). Please use the abstract ABCPolyBase class instead.

    (gh-18963)

  • The unused PolyError and PolyDomainError exceptions are removed.

    (gh-18963)

Deprecations

The .dtype attribute must return a dtype

A DeprecationWarning is now given if the .dtype attribute of an object passed into np.dtype or as a dtype=obj argument is not a dtype. NumPy will stop attempting to recursively coerce the result of .dtype.

(gh-13578)

Inexact matches for numpy.convolve and numpy.correlate are deprecated

numpy.convolve and numpy.correlate now emit a warning when there are case insensitive and/or inexact matches found for mode argument in the functions. Pass full "same", "valid", "full" strings instead of "s", "v", "f" for the mode argument.

(gh-17492)

np.typeDict has been formally deprecated

np.typeDict is a deprecated alias for np.sctypeDict and has been so for over 14 years (6689502). A deprecation warning will now be issued whenever getting np.typeDict.

(gh-17586)

Exceptions will be raised during array-like creation

When an object raised an exception during access of the special attributes __array__ or __array_interface__, this exception was usually ignored. A warning is now given when the exception is anything but AttributeError. To silence the warning, the type raising the exception has to be adapted to raise an AttributeError.

(gh-19001)

Four ndarray.ctypes methods have been deprecated

Four methods of the ndarray.ctypes object have been deprecated, as they are (undocumentated) implementation artifacts of their respective properties.

The methods in question are:

  • _ctypes.get_data (use _ctypes.data instead)
  • _ctypes.get_shape (use _ctypes.shape instead)
  • _ctypes.get_strides (use _ctypes.strides instead)
  • _ctypes.get_as_parameter (use _ctypes._as_parameter_ instead)

(gh-19031)

Expired deprecations

  • The shape argument numpy.unravel_index] cannot be passed as dims keyword argument anymore. (Was deprecated in NumPy 1.16.)

    (gh-17900)

  • The function PyUFunc_GenericFunction has been disabled. It was deprecated in NumPy 1.19. Users should call the ufunc directly using the Python API.

    (gh-18697)

  • The function PyUFunc_SetUsesArraysAsData has been disabled. It was deprecated in NumPy 1.19.

    (gh-18697)

Remove deprecated PolyBase and unused PolyError and PolyDomainError

The class PolyBase has been removed (deprecated in numpy 1.9.0). Please use the abstract ABCPolyBase class instead.

Furthermore, the unused PolyError and PolyDomainError exceptions are removed from the numpy.polynomial.

(gh-18963)

Compatibility notes

Error type changes in universal functions

The universal functions may now raise different errors on invalid input in some cases. The main changes should be that a RuntimeError was replaced with a more fitting TypeError. When multiple errors were present in the same call, NumPy may now raise a different one.

(gh-15271)

__array_ufunc__ argument validation

NumPy will now partially validate arguments before calling __array_ufunc__. Previously, it was possible to pass on invalid arguments (such as a non-existing keyword argument) when dispatch was known to occur.

(gh-15271)

__array_ufunc__ and additional positional arguments

Previously, all positionally passed arguments were checked for __array_ufunc__ support. In the case of reduce, accumulate, and reduceat all arguments may be passed by position. This means that when they were passed by position, they could previously have been asked to handle the ufunc call via __array_ufunc__. Since this depended on the way the arguments were passed (by position or by keyword), NumPy will now only dispatch on the input and output array. For example, NumPy will never dispatch on the where array in a reduction such as np.add.reduce.

(gh-15271)

Validate input values in Generator.uniform

Checked that high - low >= 0 in np.random.Generator.uniform. Raises ValueError if low > high. Previously out-of-order inputs were accepted and silently swapped, so that if low > high, the value generated was high + (low - high) * random().

(gh-17921)

/usr/include removed from default include paths

The default include paths when building a package with numpy.distutils no longer include /usr/include. This path is normally added by the compiler, and hardcoding it can be problematic. In case this causes a problem, please open an issue. A workaround is documented in MR 18658.

(gh-18658)

Changes to comparisons with dtype=...

When the dtype= (or signature) arguments to comparison ufuncs (equal, less, etc.) is used, this will denote the desired output dtype in the future. This means that:

np.equal(2, 3, dtype=object)

will give a FutureWarning that it will return an object array in the future, which currently happens for:

np.equal(None, None, dtype=object)

due to the fact that np.array(None) is already an object array. (This also happens for some other dtypes.)

Since comparisons normally only return boolean arrays, providing any other dtype will always raise an error in the future and give a DeprecationWarning now.

(gh-18718)

Changes to dtype and signature arguments in ufuncs

The universal function arguments dtype and signature which are also valid for reduction such as np.add.reduce (which is the implementation for np.sum) will now issue a warning when the dtype provided is not a "basic" dtype.

NumPy almost always ignored metadata, byteorder or time units on these inputs. NumPy will now always ignore it and raise an error if byteorder or time unit changed. The following are the most important examples of changes which will give the error. In some cases previously the information stored was not ignored, in all of these an error is now raised:

Previously ignored the byte-order (affect if non-native)

np.add(3, 5, dtype=">i32")

The biggest impact is for timedelta or datetimes:

arr = np.arange(10, dtype="m8[s]")

The examples always ignored the time unit "ns":

np.add(arr, arr, dtype="m8[ns]")
np.maximum.reduce(arr, dtype="m8[ns]")

The following previously did use "ns" (as opposed to arr.dtype)

np.add(3, 5, dtype="m8[ns]")  # Now return generic time units
np.maximum(arr, arr, dtype="m8[ns]")  # Now returns "s" (from `arr`)

The same applies for functions like np.sum which use these internally. This change is necessary to achieve consistent handling within NumPy.

If you run into these, in most cases pass for example dtype=np.timedelta64 which clearly denotes a general timedelta64 without any unit or byte-order defined. If you need to specify the output dtype precisely, you may do so by either casting the inputs or providing an output array using out=.

NumPy may choose to allow providing an exact output dtype here in the future, which would be preceded by a FutureWarning.

(gh-18718)

Ufunc signature=... and dtype= generalization and casting

The behaviour for np.ufunc(1.0, 1.0, signature=...) or np.ufunc(1.0, 1.0, dtype=...) can now yield different loops in 1.21 compared to 1.20 because of changes in promotion. When signature was previously used, the casting check on inputs was relaxed, which could lead to downcasting inputs unsafely especially if combined with casting="unsafe".

Casting is now guaranteed to be safe. If a signature is only partially provided, for example using signature=("float64", None, None), this could lead to no loop being found (an error). In that case, it is necessary to provide the complete signature to enforce casting the inputs. If dtype="float64" is used or only outputs are set (e.g. signature=(None, None, "float64") the is unchanged. We expect that very few users are affected by this change.

Further, the meaning of dtype="float64" has been slightly modified and now strictly enforces only the correct output (and not input) DTypes. This means it is now always equivalent to:

signature=(None, None, "float64")

(If the ufunc has two inputs and one output). Since this could lead to no loop being found in some cases, NumPy will normally also search for the loop:

signature=("float64", "float64", "float64")

if the first search failed. In the future, this behaviour may be customized to achieve the expected results for more complex ufuncs. (For some universal functions such as np.ldexp inputs can have different DTypes.)

(gh-18880)

Distutils forces strict floating point model on clang

NumPy distutils will now always add the -ffp-exception-behavior=strict compiler flag when compiling with clang. Clang defaults to a non-strict version, which allows the compiler to generate code that does not set floating point warnings/errors correctly.

(gh-19049)

C API changes

Use of ufunc->type_resolver and "type tuple"

NumPy now normalizes the "type tuple" argument to the type resolver functions before calling it. Note that in the use of this type resolver is legacy behaviour and NumPy will not do so when possible. Calling ufunc->type_resolver or PyUFunc_DefaultTypeResolver is strongly discouraged and will now enforce a normalized type tuple if done. Note that this does not affect providing a type resolver, which is expected to keep working in most circumstances. If you have an unexpected use-case for calling the type resolver, please inform the NumPy developers so that a solution can be found.

(gh-18718)

New Features

Added a mypy plugin for handling platform-specific numpy.number precisions

A mypy plugin is now available for automatically assigning the (platform-dependent) precisions of certain numpy.number subclasses, including the likes of numpy.int_, numpy.intp and numpy.longlong. See the documentation on scalar types <arrays.scalars.built-in> for a comprehensive overview of the affected classes.

Note that while usage of the plugin is completely optional, without it the precision of above-mentioned classes will be inferred as typing.Any.

To enable the plugin, one must add it to their mypy [configuration file] (https://mypy.readthedocs.io/en/stable/config_file.html):

[mypy]
plugins = numpy.typing.mypy_plugin

(gh-17843)

Let the mypy plugin manage extended-precision numpy.number subclasses

The mypy plugin, introduced in numpy/numpy#​17843, has been expanded: the plugin now removes annotations for platform-specific extended-precision types that are not available to the platform in question. For example, it will remove numpy.float128 when not available.

Without the plugin all extended-precision types will, as far as mypy is concerned, be available on all platforms.

To enable the plugin, one must add it to their mypy configuration file:

[mypy]
plugins = numpy.typing.mypy_plugin
                                                                        cn

(gh-18322)

New min_digits argument for printing float values

A new min_digits argument has been added to the dragon4 float printing functions numpy.format_float_positional and numpy.format_float_scientific. This kwd guarantees that at least the given number of digits will be printed when printing in unique=True mode, even if the extra digits are unnecessary to uniquely specify the value. It is the counterpart to the precision argument which sets the maximum number of digits to be printed. When unique=False in fixed precision mode, it has no effect and the precision argument fixes the number of digits.

(gh-18629)

f2py now recognizes Fortran abstract interface blocks

numpy.f2py can now parse abstract interface blocks.

(gh-18695)

BLAS and LAPACK configuration via environment variables

Autodetection of installed BLAS and LAPACK libraries can be bypassed by using the NPY_BLAS_LIBS and NPY_LAPACK_LIBS environment variables. Instead, the link flags in these environment variables will be used directly, and the language is assumed to be F77. This is especially useful in automated builds where the BLAS and LAPACK that are installed are known exactly. A use case is replacing the actual implementation at runtime via stub library links.

If NPY_CBLAS_LIBS is set (optional in addition to NPY_BLAS_LIBS), this will be used as well, by defining HAVE_CBLAS and appending the environment variable content to the link flags.

(gh-18737)

A runtime-subcriptable alias has been added for ndarray

numpy.typing.NDArray has been added, a runtime-subscriptable alias for np.ndarray[Any, np.dtype[~Scalar]]. The new type alias can be used for annotating arrays with a given dtype and unspecified shape.

NumPy does not support the annotating of array shapes as of 1.21, this is expected to change in the future though (see 646{.interpreted-text role="pep"}).

Examples
>>> import numpy as np
>>> import numpy.typing as npt

>>> print(npt.NDArray)
numpy.ndarray[typing.Any, numpy.dtype[~ScalarType]]

>>> print(npt.NDArray[np.float64])
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]

>>> NDArrayInt = npt.NDArray[np.int_]
>>> a: NDArrayInt = np.arange(10)

>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
...     return np.array(a)

(gh-18935)

Improvements

Arbitrary period option for numpy.unwrap

The size of the interval over which phases are unwrapped is no longer restricted to 2 * pi. This is especially useful for unwrapping degrees, but can also be used for other intervals.

>>> phase_deg = np.mod(np.linspace(0,720,19), 360) - 180
>>> phase_deg
array([-180., -140., -100.,  -60.,  -20.,   20.,   60.,  100.,  140.,
       -180., -140., -100.,  -60.,  -20.,   20.,   60.,  100.,  140.,
       -180.])

>>> unwrap(phase_deg, period=360)
array([-180., -140., -100.,  -60.,  -20.,   20.,   60.,  100.,  140.,
        180.,  220.,  260.,  300.,  340.,  380.,  420.,  460.,  500.,
        540.])

(gh-16987)

np.unique now returns single NaN

When np.unique operated on an array with multiple NaN entries, its return included a NaN for each entry that was NaN in the original array. This is now improved such that the returned array contains just one NaN as the last element.

Also for complex arrays all NaN values are considered equivalent (no matter whether the NaN is in the real or imaginary part). As the representant for the returned array the smallest one in the lexicographical order is chosen - see np.sort for how the lexicographical order is defined for complex arrays.

(gh-18070)

Generator.rayleigh and Generator.geometric performance improved

The performance of Rayleigh and geometric random variate generation in Generator has improved. These are both transformation of exponential random variables and the slow log-based inverse cdf transformation has been replaced with the Ziggurat-based exponential variate generator.

This change breaks the stream of variates generated when variates from either of these distributions are produced.

(gh-18666)

Placeholder annotations have been improved

All placeholder annotations, that were previously annotated as typing.Any, have been improved. Where appropiate they have been replaced with explicit function definitions, classes or other miscellaneous objects.

(gh-18934)

Performance improvements

Improved performance in integer division of NumPy arrays

Integer division of NumPy arrays now uses libdivide when the divisor is a constant. With the usage of libdivide and other minor optimizations, there is a large speedup. The // operator and np.floor_divide makes use of the new changes.

(gh-17727)

Improve performance of np.save and np.load for small arrays

np.save is now a lot faster for small arrays.

np.load is also faster for small arrays, but only when serializing with a version >= (3, 0).

Both are done by removing checks that are only relevant for Python 2, while still maintaining compatibility with arrays which might have been created by Python 2.

(gh-18657)

Changes

numpy.piecewise output class now matches the input class

When numpy.ndarray subclasses are used on input to numpy.piecewise, they are passed on to the functions. The output will now be of the same subclass as well.

(gh-18110)

Enable Accelerate Framework

With the release of macOS 11.3, several different issues that numpy was encountering when using Accelerate Framework's implementation of BLAS and LAPACK should be resolved. This change enables the Accelerate Framework as an option on macOS. If additional issues are found, please file a bug report against Accelerate using the developer feedback assistant tool (https://developer.apple.com/bug-reporting/). We intend to address issues promptly and plan to continue supporting and updating our BLAS and LAPACK libraries.

(gh-18874)

Checksums

MD5
e4b31fd5cb97e50238b3dbb3487b2cb7  numpy-1.21.0-cp37-cp37m-macosx_10_9_x86_64.whl
111e09f3fddd8e14540cf56493dd786a  numpy-1.21.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
e2fc116043d1b91c627f3c8884151f33  numpy-1.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
82e267da77628b96cdf8832e475f6ef3  numpy-1.21.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baa416fe77b840a19556f5d808eb3165  numpy-1.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
aba24836f51bb0a855434c41de122e3d  numpy-1.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
aa9f94fa6eabfa193902676825934196  numpy-1.21.0-cp37-cp37m-win32.whl
6d771c7670b95adb62627e383c883804  numpy-1.21.0-cp37-cp37m-win_amd64.whl
e6d77cae6054b738603415faf9cb4358  numpy-1.21.0-cp38-cp38-macosx_10_9_universal2.whl
9589cfe5a22f54956101b7131be5cabd  numpy-1.21.0-cp38-cp38-macosx_10_9_x86_64.whl
5faa22dffa53cfe7d1d40d48aa817670  numpy-1.21.0-cp38-cp38-macosx_11_0_arm64.whl
b81545a2924a201817d433c3bad0bc7d  numpy-1.21.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
3e60589e3325a3583880bf6998cfaca6  numpy-1.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
baf409eb08b7462899d45c42a7c1d854  numpy-1.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4f311de7973503dde6ad3915f158fd63  numpy-1.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
1a79926ad8d3dda573f5c2d8d06e0e38  numpy-1.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
0b39eb396a1d5983f6eb2075a867a1a6  numpy-1.21.0-cp38-cp38-win32.whl
5c8c3e94f5a55123b1a0d3a4df14b505  numpy-1.21.0-cp38-cp38-win_amd64.whl
c6e9fa30e82e3ca1551d2f048d4a1dc4  numpy-1.21.0-cp39-cp39-macosx_10_9_universal2.whl
96d7d3a438296bfc68b819b3624936a5  numpy-1.21.0-cp39-cp39-macosx_10_9_x86_64.whl
31cf2152b4151912be9d165633a7d8eb  numpy-1.21.0-cp39-cp39-macosx_11_0_arm64.whl
e49cd2db6ec712b8b1d516154b5a034a  numpy-1.21.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c10e13fef152ed1c64151c8b6f6d0799  numpy-1.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
a627acdfcd302807cf8592d5bd958d35  numpy-1.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2287cd16300b363d376b661646fded9  numpy-1.21.0-cp39-cp39-win32.whl
29d1bf596981d930bb1c95c944b4b3d8  numpy-1.21.0-cp39-cp39-win_amd64.whl
42d05fcbab6137a404be36f27fc254f0  numpy-1.21.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
003e34bd2cba06e7fe299a864964ea24  numpy-1.21.0.tar.gz
930ebfdffd10fed701a7823691f02983  numpy-1.21.0.zip
SHA256
d5caa946a9f55511e76446e170bdad1d12d6b54e17a2afe7b189112ed4412bb8  numpy-1.21.0-cp37-cp37m-macosx_10_9_x86_64.whl
ac4fd578322842dbda8d968e3962e9f22e862b6ec6e3378e7415625915e2da4d  numpy-1.21.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
598fe100b2948465cf3ed64b1a326424b5e4be2670552066e17dfaa67246011d  numpy-1.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
7c55407f739f0bfcec67d0df49103f9333edc870061358ac8a8c9e37ea02fcd2  numpy-1.21.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
75579acbadbf74e3afd1153da6177f846212ea2a0cc77de53523ae02c9256513  numpy-1.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
cc367c86eb87e5b7c9592935620f22d13b090c609f1b27e49600cd033b529f54  numpy-1.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
d89b0dc7f005090e32bb4f9bf796e1dcca6b52243caf1803fdd2b748d8561f63  numpy-1.21.0-cp37-cp37m-win32.whl
eda2829af498946c59d8585a9fd74da3f810866e05f8df03a86f70079c7531dd  numpy-1.21.0-cp37-cp37m-win_amd64.whl
1a784e8ff7ea2a32e393cc53eb0003eca1597c7ca628227e34ce34eb11645a0e  numpy-1.21.0-cp38-cp38-macosx_10_9_universal2.whl
bba474a87496d96e61461f7306fba2ebba127bed7836212c360f144d1e72ac54  numpy-1.21.0-cp38-cp38-macosx_10_9_x86_64.whl
fd0a359c1c17f00cb37de2969984a74320970e0ceef4808c32e00773b06649d9  numpy-1.21.0-cp38-cp38-macosx_11_0_arm64.whl
e4d5a86a5257843a18fb1220c5f1c199532bc5d24e849ed4b0289fb59fbd4d8f  numpy-1.21.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
620732f42259eb2c4642761bd324462a01cdd13dd111740ce3d344992dd8492f  numpy-1.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b9205711e5440954f861ceeea8f1b415d7dd15214add2e878b4d1cf2bcb1a914  numpy-1.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ad09f55cc95ed8d80d8ab2052f78cc21cb231764de73e229140d81ff49d8145e  numpy-1.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
a1f2fb2da242568af0271455b89aee0f71e4e032086ee2b4c5098945d0e11cf6  numpy-1.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
e58ddb53a7b4959932f5582ac455ff90dcb05fac3f8dcc8079498d43afbbde6c  numpy-1.21.0-cp38-cp38-win32.whl
d2910d0a075caed95de1a605df00ee03b599de5419d0b95d55342e9a33ad1fb3  numpy-1.21.0-cp38-cp38-win_amd64.whl
a290989cd671cd0605e9c91a70e6df660f73ae87484218e8285c6522d29f6e38  numpy-1.21.0-cp39-cp39-macosx_10_9_universal2.whl
3537b967b350ad17633b35c2f4b1a1bbd258c018910b518c30b48c8e41272717  numpy-1.21.0-cp39-cp39-macosx_10_9_x86_64.whl
ccc6c650f8700ce1e3a77668bb7c43e45c20ac06ae00d22bdf6760b38958c883  numpy-1.21.0-cp39-cp39-macosx_11_0_arm64.whl
709884863def34d72b183d074d8ba5cfe042bc3ff8898f1ffad0209161caaa99  numpy-1.21.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bebab3eaf0641bba26039fb0b2c5bf9b99407924b53b1ea86e03c32c64ef5aef  numpy-1.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
cf680682ad0a3bef56dae200dbcbac2d57294a73e5b0f9864955e7dd7c2c2491  numpy-1.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d95d16204cd51ff1a1c8d5f9958ce90ae190be81d348b514f9be39f878b8044a  numpy-1.21.0-cp39-cp39-win32.whl
2ba579dde0563f47021dcd652253103d6fd66165b18011dce1a0609215b2791e  numpy-1.21.0-cp39-cp39-win_amd64.whl
3c40e6b860220ed862e8097b8f81c9af6d7405b723f4a7af24a267b46f90e461  numpy-1.21.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b662c841b29848c04d9134f31dbaa7d4c8e673f45bb3a5f28d02f49c424d558a  numpy-1.21.0.tar.gz
e80fe25cba41c124d04c662f33f6364909b985f2eb5998aaa5ae4b9587242cce  numpy-1.21.0.zip

v1.20.3

Compare Source

NumPy 1.20.3 Release Notes

NumPy 1.20.3 is a bugfix release containing several fixes merged to the main branch after the NumPy 1.20.2 release.

Contributors

A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Anne Archibald
  • Bas van Beek
  • Charles Harris
  • Dong Keun Oh +
  • Kamil Choudhury +
  • Sayed Adel
  • Sebastian Berg

Pull requests merged

A total of 15 pull requests were merged for this release.

  • #​18763: BUG: Correct datetime64 missing type overload for datetime.date...
  • #​18764: MAINT: Remove __all__ in favor of explicit re-exports
  • #​18768: BLD: Strip extra newline when dumping gfortran version on MacOS
  • #​18769: BUG: fix segfault in object/longdouble operations
  • #​18794: MAINT: Use towncrier build explicitly
  • #​18887: MAINT: Relax certain integer-type constraints
  • #​18915: MAINT: Remove unsafe unions and ABCs from return-annotations
  • #​18921: MAINT: Allow more recursion depth for scalar tests.
  • #​18922: BUG: Initialize the full nditer buffer in case of error
  • #​18923: BLD: remove unnecessary flag -faltivec on macOS
  • #​18924: MAINT, CI: treats _SIMD module build warnings as errors through...
  • #​18925: BUG: for MINGW, threads.h existence test requires GLIBC > 2.12
  • #​18941: BUG: Make changelog recognize gh- as a MR number prefix.
  • #​18948: REL, DOC: Prepare for the NumPy 1.20.3 release.
  • #​18953: BUG: Fix failing mypy test in 1.20.x.

Checksums

MD5
702d0185042f1ff9a5d7e72a29f4e1c0  numpy-1.20.3-cp37-cp37m-macosx_10_9_x86_64.whl
3d0284b39b20c243b74f6690ad5ae27f  numpy-1.20.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
d1b42dd67dc228088cf822eaab86d424  numpy-1.20.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
126b1a5d46cc7d9b9b426f56d075a1e0  numpy-1.20.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5b0445346f08b610025dbd2064d4b482  numpy-1.20.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
02bd4a2c764882e8af353c16344cb633  numpy-1.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
0f6a36724d5477c8fca6c34e73683db6  numpy-1.20.3-cp37-cp37m-win32.whl
c7d3ae93743d6c0ea2c9dfcad1d42cb4  numpy-1.20.3-cp37-cp37m-win_amd64.whl
445da50ae14b3318170ccf996baca72c  numpy-1.20.3-cp38-cp38-macosx_10_9_x86_64.whl
c651fdb4829703e164bc78613c1a90a8  numpy-1.20.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
c9411ef729b8ebe9ed3b8e9dee3da4ac  numpy-1.20.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
ff69ad241598607fdfea24155625a6e3  numpy-1.20.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9fd8d44d8a5f19e434e9dfb7738d954f  numpy-1.20.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
d144fdfe141442a7f362d498bc9a40c2  numpy-1.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
e7ffa27f1c75cf11529d90967fa15bbc  numpy-1.20.3-cp38-cp38-win32.whl
58c12a54d1b5bc14d36ed2b0d8617fef  numpy-1.20.3-cp38-cp38-win_amd64.whl
18efbadcb513054c765f826fc3bb1645  numpy-1.20.3-cp39-cp39-macosx_10_9_x86_64.whl
319300952bd42455cb2ad98188c74b5f  numpy-1.20.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
1d1451f9a5a2eeef666fc512a101a6ca  numpy-1.20.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
cdef3fb002bb5e3036f056ea0528c804  numpy-1.20.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
85e575735877094f3a76106e9d2a9cac  numpy-1.20.3-cp39-cp39-win32.whl
59f1dba95dedc7a1bebc58ee7e7a945a  numpy-1.20.3-cp39-cp39-win_amd64.whl
6abc979843929b41b099e4e6c0253063  numpy-1.20.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
802ddf90c7e226ba56ed0ea244f8b53d  numpy-1.20.3.tar.gz
949d9114af9accc25ede1daa359c4227  numpy-1.20.3.zip
SHA256
70eb5808127284c4e5c9e836208e09d685a7978b6a216db85960b1a112eeace8  numpy-1.20.3-cp37-cp37m-macosx_10_9_x86_64.whl
6ca2b85a5997dabc38301a22ee43c82adcb53ff660b89ee88dded6b33687e1d8  numpy-1.20.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
c5bf0e132acf7557fc9bb8ded8b53bbbbea8892f3c9a1738205878ca9434206a  numpy-1.20.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
db250fd3e90117e0312b611574cd1b3f78bec046783195075cbd7ba9c3d73f16  numpy-1.20.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
637d827248f447e63585ca3f4a7d2dfaa882e094df6cfa177cc9cf9cd6cdf6d2  numpy-1.20.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
8b7bb4b9280da3b2856cb1fc425932f46fba609819ee1c62256f61799e6a51d2  numpy-1.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
67d44acb72c31a97a3d5d33d103ab06d8ac20770e1c5ad81bdb3f0c086a56cf6  numpy-1.20.3-cp37-cp37m-win32.whl
43909c8bb289c382170e0282158a38cf306a8ad2ff6dfadc447e90f9961bef43  numpy-1.20.3-cp37-cp37m-win_amd64.whl
f1452578d0516283c87608a5a5548b0cdde15b99650efdfd85182102ef7a7c17  numpy-1.20.3-cp38-cp38-macosx_10_9_x86_64.whl
6e51534e78d14b4a009a062641f465cfaba4fdcb046c3ac0b1f61dd97c861b1b  numpy-1.20.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
e515c9a93aebe27166ec9593411c58494fa98e5fcc219e47260d9ab8a1cc7f9f  numpy-1.20.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
c1c09247ccea742525bdb5f4b5ceeacb34f95731647fe55774aa36557dbb5fa4  numpy-1.20.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
66fbc6fed94a13b9801fb70b96ff30605ab0a123e775a5e7a26938b717c5d71a  numpy-1.20.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
ea9cff01e75a956dbee133fa8e5b68f2f92175233de2f88de3a682dd94deda65  numpy-1.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
f39a995e47cb8649673cfa0579fbdd1cdd33ea497d1728a6cb194d6252268e48  numpy-1.20.3-cp38-cp38-win32.whl
1676b0a292dd3c99e49305a16d7a9f42a4ab60ec522eac0d3dd20cdf362ac010  numpy-1.20.3-cp38-cp38-win_amd64.whl
830b044f4e64a76ba71448fce6e604c0fc47a0e54d8f6467be23749ac2cbd2fb  numpy-1.20.3-cp39-cp39-macosx_10_9_x86_64.whl
55b745fca0a5ab738647d0e4db099bd0a23279c32b31a783ad2ccea729e632df  numpy-1.20.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
5d050e1e4bc9ddb8656d7b4f414557720ddcca23a5b88dd7cff65e847864c400  numpy-1.20.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
a9c65473ebc342715cb2d7926ff1e202c26376c0dcaaee85a1fd4b8d8c1d3b2f  numpy-1.20.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
16f221035e8bd19b9dc9a57159e38d2dd060b48e93e1d843c49cb370b0f415fd  numpy-1.20.3-cp39-cp39-win32.whl
6690080810f77485667bfbff4f69d717c3be25e5b11bb2073e76bb3f578d99b4  numpy-1.20.3-cp39-cp39-win_amd64.whl
4e465afc3b96dbc80cf4a5273e5e2b1e3451286361b4af70ce1adb2984d392f9  numpy-1.20.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b7340f0628ce1823c151e3d2a2a8cba2a3ff1357fba4475a24b1816e75c21f90  numpy-1.20.3.tar.gz
e55185e51b18d788e49fe8305fd73ef4470596b33fc2c1ceb304566b99c71a69  numpy-1.20.3.zip

Configuration

📅 Schedule: At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever MR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this MR and you won't be reminded about this update again.


  • If you want to rebase/retry this MR, click this checkbox.

This MR has been generated by Renovate Bot.

Merge request reports