Update dependency numpy to v1.22.2
This MR contains the following updates:
Package | Type | Update | Change |
---|---|---|---|
numpy (source) | ironbank-pypi | minor |
1.20.2 -> 1.22.2
|
Release Notes
numpy/numpy
v1.22.2
NumPy 1.22.2 Release Notes
The NumPy 1.22.2 is maintenance release that fixes bugs discovered after the 1.22.1 release. Notable fixes are:
- Several build related fixes for downstream projects and other platforms.
- Various Annotation fixes/additions.
- Numpy wheels for Windows will use the 1.41 tool chain, fixing downstream link problems for projects using NumPy provided libraries on Windows.
- Deal with CVE-2021-41495 complaint.
The Python versions supported for this release are 3.8-3.10.
Contributors
A total of 14 people contributed to this release. People with a "+" by their names contributed a patch for the first time.
- Andrew J. Hesford +
- Bas van Beek
- Brénainn Woodsend +
- Charles Harris
- Hood Chatham
- Janus Heide +
- Leo Singer
- Matti Picus
- Mukulika Pahari
- Niyas Sait
- Pearu Peterson
- Ralf Gommers
- Sebastian Berg
- Serge Guelton
Pull requests merged
A total of 21 pull requests were merged for this release.
- #20842: BLD: Add NPY_DISABLE_SVML env var to opt out of SVML
- #20843: BUG: Fix build of third party extensions with Py_LIMITED_API
-
#20844: TYP: Fix pyright being unable to infer the
real
andimag
... - #20845: BUG: Fix comparator function signatures
-
#20906: BUG: Avoid importing
numpy.distutils
on import numpy.testing - #20907: MAINT: remove outdated mingw32 fseek support
-
#20908: TYP: Relax the return type of
np.vectorize
- #20909: BUG: fix f2py's define for threading when building with Mingw
- #20910: BUG: distutils: fix building mixed C/Fortran extensions
- #20912: DOC,TST: Fix Pandas code example as per new release
-
#20935: TYP, MAINT: Add annotations for
flatiter.__setitem__
-
#20936: MAINT, TYP: Added missing where typehints in
fromnumeric.pyi
- #20937: BUG: Fix build_ext interaction with non numpy extensions
- #20938: BUG: Fix missing intrinsics for windows/arm64 target
- #20945: REL: Prepare for the NumPy 1.22.2 release.
-
#20982: MAINT: f2py: don't generate code that triggers
-Wsometimes-uninitialized
. - #20983: BUG: Fix incorrect return type in reduce without initial value
- #20984: ENH: review return values for PyArray_DescrNew
- #20985: MAINT: be more tolerant of setuptools >= 60
- #20986: BUG: Fix misplaced return.
- #20992: MAINT: Further small return value validation fixes
Checksums
MD5
2319f8d7c629d0ba3d3d3b1d5605d494 numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
023c01a6d3aa528f8e88b0837dcab7ed numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
84b36e8893b811d17a19404c68db7ce6 numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
744da9614e8272a384b542d129cd17a9 numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ee012ed5e7c98c6f48026dfa818b2274 numpy-1.22.2-cp310-cp310-win_amd64.whl
73e4fdcf398327bc4241dc38b6d10211 numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
9fcbca2a614af3b9a37456643ab1c99d numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
b7e0d4a19867d33765c7187d1390eef4 numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc8d79d75588737ea77fe85a4f05365a numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
05906141c095148c53c043c381e6fabe numpy-1.22.2-cp38-cp38-win32.whl
05d3b6d34c0fa031e69ec0476e8d4c9c numpy-1.22.2-cp38-cp38-win_amd64.whl
1449889d856de0e88437fa76d3284e00 numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
e25666ab6ec0692368f328b7b98c27a3 numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
59e3013894bcc6267054c746d9339cf8 numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7606b9898c20d2b2aa7fc7018bc9c5cd numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2686a1495c620e85842967bf8a5f1b2f numpy-1.22.2-cp39-cp39-win32.whl
54432a84807ab69ac3432e6090d5a169 numpy-1.22.2-cp39-cp39-win_amd64.whl
4dbecace42595742485b854b213341b6 numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5b506b01ef454f39272ca75de1c7f61c numpy-1.22.2.tar.gz
a903008d992b77cb68129173c0f61f60 numpy-1.22.2.zip
SHA256
515a8b6edbb904594685da6e176ac9fbea8f73a5ebae947281de6613e27f1956 numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
76a4f9bce0278becc2da7da3b8ef854bed41a991f4226911a24a9711baad672c numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
168259b1b184aa83a514f307352c25c56af111c269ffc109d9704e81f72e764b numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3556c5550de40027d3121ebbb170f61bbe19eb639c7ad0c7b482cd9b560cd23b numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aafa46b5a39a27aca566198d3312fb3bde95ce9677085efd02c86f7ef6be4ec7 numpy-1.22.2-cp310-cp310-win_amd64.whl
55535c7c2f61e2b2fc817c5cbe1af7cb907c7f011e46ae0a52caa4be1f19afe2 numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
60cb8e5933193a3cc2912ee29ca331e9c15b2da034f76159b7abc520b3d1233a numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
0b536b6840e84c1c6a410f3a5aa727821e6108f3454d81a5cd5900999ef04f89 numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2638389562bda1635b564490d76713695ff497242a83d9b684d27bb4a6cc9d7a numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6767ad399e9327bfdbaa40871be4254d1995f4a3ca3806127f10cec778bd9896 numpy-1.22.2-cp38-cp38-win32.whl
03ae5850619abb34a879d5f2d4bb4dcd025d6d8fb72f5e461dae84edccfe129f numpy-1.22.2-cp38-cp38-win_amd64.whl
d76a26c5118c4d96e264acc9e3242d72e1a2b92e739807b3b69d8d47684b6677 numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
15efb7b93806d438e3bc590ca8ef2f953b0ce4f86f337ef4559d31ec6cf9d7dd numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
badca914580eb46385e7f7e4e426fea6de0a37b9e06bec252e481ae7ec287082 numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
94dd11d9f13ea1be17bac39c1942f527cbf7065f94953cf62dfe805653da2f8f numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8cf33634b60c9cef346663a222d9841d3bbbc0a2f00221d6bcfd0d993d5543f6 numpy-1.22.2-cp39-cp39-win32.whl
59153979d60f5bfe9e4c00e401e24dfe0469ef8da6d68247439d3278f30a180f numpy-1.22.2-cp39-cp39-win_amd64.whl
4a176959b6e7e00b5a0d6f549a479f869829bfd8150282c590deee6d099bbb6e numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
093d513a460fd94f94c16193c3ef29b2d69a33e482071e3d6d6e561a700587a6 numpy-1.22.2.tar.gz
076aee5a3763d41da6bef9565fdf3cb987606f567cd8b104aded2b38b7b47abf numpy-1.22.2.zip
v1.22.1
NumPy 1.22.1 Release Notes
The NumPy 1.22.1 is maintenance release that fixes bugs discovered after the 1.22.0 release. Notable fixes are:
- Fix f2PY docstring problems (SciPy)
- Fix reduction type problems (AstroPy)
- Fix various typing bugs.
The Python versions supported for this release are 3.8-3.10.
Contributors
A total of 14 people contributed to this release. People with a "+" by their names contributed a patch for the first time.
- Arryan Singh
- Bas van Beek
- Charles Harris
- Denis Laxalde
- Isuru Fernando
- Kevin Sheppard
- Matthew Barber
- Matti Picus
- Melissa Weber Mendonça
- Mukulika Pahari
- Omid Rajaei +
- Pearu Peterson
- Ralf Gommers
- Sebastian Berg
Pull requests merged
A total of 20 pull requests were merged for this release.
- #20702: MAINT, DOC: Post 1.22.0 release fixes.
- #20703: DOC, BUG: Use pngs instead of svgs.
- #20704: DOC: Fixed the link on user-guide landing page
- #20714: BUG: Restore vc141 support
- #20724: BUG: Fix array dimensions solver for multidimensional arguments...
-
#20725: TYP: change type annotation for
__array_namespace__
to ModuleType -
#20726: TYP, MAINT: Allow
ndindex
to accept integer tuples - #20757: BUG: Relax dtype identity check in reductions
-
#20763: TYP: Allow time manipulation functions to accept
date
andtimedelta
... -
#20768: TYP: Relax the type of
ndarray.__array_finalize__
- #20795: MAINT: Raise RuntimeError if setuptools version is too recent.
- #20796: BUG, DOC: Fixes SciPy docs build warnings
- #20797: DOC: fix OpenBLAS version in release note
- #20798: PERF: Optimize array check for bounded 0,1 values
- #20805: BUG: Fix that reduce-likes honor out always (and live in the...
-
#20806: BUG:
array_api.argsort(descending=True)
respects relative... -
#20807: BUG: Allow integer inputs for pow-related functions in
array_api
- #20814: DOC: Refer to NumPy, not pandas, in main page
- #20815: DOC: Update Copyright to 2022 [License]
- #20819: BUG: Return correctly shaped inverse indices in array_api set...
Checksums
MD5
8edd68c8998cb694e244ce793b2d088c numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl
e4858aafd41cdba76cd14161bfc512c3 numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl
96f4fc3f321625278ca3807c7c8c789c numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl
2ddc25b9c9d7b517610689055f9f553a numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8d40c6fd64389c05646b5ef95cded6e5 numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1a8359c6436d1bcfe84a094337903a48 numpy-1.22.1-cp310-cp310-win_amd64.whl
033f9aa72a732646f3fb4563226320ee numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl
59e13abecdf4194f75b654f1d853b244 numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl
3ce885a0c10e95f5756d7c1878eaa246 numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl
546b2a0866561673d5b7eadcc086af24 numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
200c0a7bc3a24cfa6f4358d7274b5535 numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
defe48b3b5f44c3991e830f7cde0a79c numpy-1.22.1-cp38-cp38-win32.whl
15557a847a78bcbf651ca6689ae37935 numpy-1.22.1-cp38-cp38-win_amd64.whl
067e734594c67d8141190b7eabb979ee numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl
1458d42b26da341baaee134d85e3fd70 numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl
463b365c80efffd807194c78b4796235 numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl
58d8dc02dd884898c1b7ee1bee1dd216 numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
48e2d2905822f78a96d400c78bd16cbb numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c5059bd82d8f2c509c889fba09251307 numpy-1.22.1-cp39-cp39-win32.whl
eb9a0655d16897f0adf6ea53b9f3bda4 numpy-1.22.1-cp39-cp39-win_amd64.whl
74cb5dba2f37dc445ffd3068eb1d58fe numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
90fff1ee7c7f843fc7a234addc70c71c numpy-1.22.1.tar.gz
c25dad73053350dd0278605d8ed8a5c7 numpy-1.22.1.zip
SHA256
3d62d6b0870b53799204515145935608cdeb4cebb95a26800b6750e48884cc5b numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl
831f2df87bd3afdfc77829bc94bd997a7c212663889d56518359c827d7113b1f numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl
8d1563060e77096367952fb44fca595f2b2f477156de389ce7c0ade3aef29e21 numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl
69958735d5e01f7b38226a6c6e7187d72b7e4d42b6b496aca5860b611ca0c193 numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
45a7dfbf9ed8d68fd39763940591db7637cf8817c5bce1a44f7b56c97cbe211e numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7e957ca8112c689b728037cea9c9567c27cf912741fabda9efc2c7d33d29dfa1 numpy-1.22.1-cp310-cp310-win_amd64.whl
800dfeaffb2219d49377da1371d710d7952c9533b57f3d51b15e61c4269a1b5b numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl
65f5e257987601fdfc63f1d02fca4d1c44a2b85b802f03bd6abc2b0b14648dd2 numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl
632e062569b0fe05654b15ef0e91a53c0a95d08ffe698b66f6ba0f927ad267c2 numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl
0d245a2bf79188d3f361137608c3cd12ed79076badd743dc660750a9f3074f7c numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
26b4018a19d2ad9606ce9089f3d52206a41b23de5dfe8dc947d2ec49ce45d015 numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8ad59e6e341f38266f1549c7c2ec70ea0e3d1effb62a44e5c3dba41c55f0187 numpy-1.22.1-cp38-cp38-win32.whl
60f19c61b589d44fbbab8ff126640ae712e163299c2dd422bfe4edc7ec51aa9b numpy-1.22.1-cp38-cp38-win_amd64.whl
2db01d9838a497ba2aa9a87515aeaf458f42351d72d4e7f3b8ddbd1eba9479f2 numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl
bcd19dab43b852b03868796f533b5f5561e6c0e3048415e675bec8d2e9d286c1 numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl
78bfbdf809fc236490e7e65715bbd98377b122f329457fffde206299e163e7f3 numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl
c51124df17f012c3b757380782ae46eee85213a3215e51477e559739f57d9bf6 numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88d54b7b516f0ca38a69590557814de2dd638d7d4ed04864826acaac5ebb8f01 numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b5ec9a5eaf391761c61fd873363ef3560a3614e9b4ead17347e4deda4358bca4 numpy-1.22.1-cp39-cp39-win32.whl
4ac4d7c9f8ea2a79d721ebfcce81705fc3cd61a10b731354f1049eb8c99521e8 numpy-1.22.1-cp39-cp39-win_amd64.whl
e60ef82c358ded965fdd3132b5738eade055f48067ac8a5a8ac75acc00cad31f numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dd1968402ae20dfd59b34acd799b494be340c774f6295e9bf1c2b9842a5e416d numpy-1.22.1.tar.gz
e348ccf5bc5235fc405ab19d53bec215bb373300e5523c7b476cc0da8a5e9973 numpy-1.22.1.zip
v1.22.0
NumPy 1.22.0 Release Notes
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:
- Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
- A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
- NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
- New methods for
quantile
,percentile
, and related functions. The new methods provide a complete set of the methods commonly found in the literature. - A new configurable allocator for use by downstream projects.
These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.
The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.
Expired deprecations
Deprecated numeric style dtype strings have been removed
Using the strings "Bytes0"
, "Datetime64"
, "Str0"
, "Uint32"
,
and "Uint64"
as a dtype will now raise a TypeError
.
(gh-19539)
loads
, ndfromtxt
, and mafromtxt
in npyio
Expired deprecations for numpy.loads
was deprecated in v1.15, with the recommendation that
users use pickle.loads
instead. ndfromtxt
and mafromtxt
were both
deprecated in v1.17 - users should use numpy.genfromtxt
instead with
the appropriate value for the usemask
parameter.
(gh-19615)
Deprecations
Use delimiter rather than delimitor as kwarg in mrecords
The misspelled keyword argument delimitor
of
numpy.ma.mrecords.fromtextfile()
has been changed to delimiter
,
using it will emit a deprecation warning.
(gh-19921)
kth
values to (arg-)partition has been deprecated
Passing boolean numpy.partition
and numpy.argpartition
would previously accept
boolean values for the kth
parameter, which would subsequently be
converted into integers. This behavior has now been deprecated.
(gh-20000)
np.MachAr
class has been deprecated
The The numpy.MachAr
class and finfo.machar <numpy.finfo>
attribute have
been deprecated. Users are encouraged to access the property if interest
directly from the corresponding numpy.finfo
attribute.
(gh-20201)
Compatibility notes
Distutils forces strict floating point model on clang
NumPy now sets the -ftrapping-math
option on clang to enforce correct
floating point error handling for universal functions. Clang defaults to
non-IEEE and C99 conform behaviour otherwise. This change (using the
equivalent but newer -ffp-exception-behavior=strict
) was attempted in
NumPy 1.21, but was effectively never used.
(gh-19479)
Removed floor division support for complex types
Floor division of complex types will now result in a TypeError
>>> a = np.arange(10) + 1j* np.arange(10)
>>> a // 1
TypeError: ufunc 'floor_divide' not supported for the input types...
(gh-19135)
numpy.vectorize
functions now produce the same output class as the base function
When a function that respects numpy.ndarray
subclasses is vectorized
using numpy.vectorize
, the vectorized function will now be
subclass-safe also for cases that a signature is given (i.e., when
creating a gufunc
): the output class will be the same as that returned
by the first call to the underlying function.
(gh-19356)
Python 3.7 is no longer supported
Python support has been dropped. This is rather strict, there are changes that require Python >= 3.8.
(gh-19665)
str/repr of complex dtypes now include space after punctuation
The repr of
np.dtype({"names": ["a"], "formats": [int], "offsets": [2]})
is now
dtype({'names': ['a'], 'formats': ['<i8'], 'offsets': [2], 'itemsize': 10})
,
whereas spaces where previously omitted after colons and between fields.
The old behavior can be restored via
np.set_printoptions(legacy="1.21")
.
(gh-19687)
advance
in PCG64DSXM
and PCG64
Corrected Fixed a bug in the advance
method of PCG64DSXM
and PCG64
. The bug
only affects results when the step was larger than 2^{64}
on platforms
that do not support 128-bit integers(e.g., Windows and 32-bit Linux).
(gh-20049)
Change in generation of random 32 bit floating point variates
There was bug in the generation of 32 bit floating point values from the uniform distribution that would result in the least significant bit of the random variate always being 0. This has been fixed.
This change affects the variates produced by the random.Generator
methods random
, standard_normal
, standard_exponential
, and
standard_gamma
, but only when the dtype is specified as
numpy.float32
.
(gh-20314)
C API changes
Masked inner-loops cannot be customized anymore
The masked inner-loop selector is now never used. A warning will be given in the unlikely event that it was customized.
We do not expect that any code uses this. If you do use it, you must unset the selector on newer NumPy version. Please also contact the NumPy developers, we do anticipate providing a new, more specific, mechanism.
The customization was part of a never-implemented feature to allow for faster masked operations.
(gh-19259)
New Features
NEP 49 configurable allocators
As detailed in NEP 49, the
function used for allocation of the data segment of a ndarray can be
changed. The policy can be set globally or in a context. For more
information see the NEP and the data_memory
{.interpreted-text
role="ref"} reference docs. Also add a NUMPY_WARN_IF_NO_MEM_POLICY
override to warn on dangerous use of transfering ownership by setting
NPY_ARRAY_OWNDATA
.
(gh-17582)
Implementation of the NEP 47 (adopting the array API standard)
An initial implementation of NEP47, adoption
of the array API standard, has been added as numpy.array_api
. The
implementation is experimental and will issue a UserWarning on import,
as the array API standard is still in
draft state. numpy.array_api
is a conforming implementation of the
array API standard, which is also minimal, meaning that only those
functions and behaviors that are required by the standard are
implemented (see the NEP for more info). Libraries wishing to make use
of the array API standard are encouraged to use numpy.array_api
to
check that they are only using functionality that is guaranteed to be
present in standard conforming implementations.
(gh-18585)
Generate C/C++ API reference documentation from comments blocks is now possible
This feature depends on Doxygen in the generation process and on Breathe to integrate it with Sphinx.
(gh-18884)
c_intp
precision via a mypy plugin
Assign the platform-specific The mypy plugin, introduced in
numpy/numpy#17843, has
again been expanded: the plugin now is now responsible for setting the
platform-specific precision of numpy.ctypeslib.c_intp
, the latter
being used as data type for various numpy.ndarray.ctypes
attributes.
Without the plugin, aforementioned type will default to
ctypes.c_int64
.
To enable the plugin, one must add it to their mypy configuration file:
[mypy]
plugins = numpy.typing.mypy_plugin
(gh-19062)
Add NEP 47-compatible dlpack support
Add a ndarray.__dlpack__()
method which returns a dlpack
C structure
wrapped in a PyCapsule
. Also add a np._from_dlpack(obj)
function,
where obj
supports __dlpack__()
, and returns an ndarray
.
(gh-19083)
keepdims
optional argument added to numpy.argmin
, numpy.argmax
keepdims
argument is added to numpy.argmin
, numpy.argmax
. If set
to True
, the axes which are reduced are left in the result as
dimensions with size one. The resulting array has the same number of
dimensions and will broadcast with the input array.
(gh-19211)
bit_count
to compute the number of 1-bits in an integer
Computes the number of 1-bits in the absolute value of the input. This
works on all the numpy integer types. Analogous to the builtin
int.bit_count
or popcount
in C++.
>>> np.uint32(1023).bit_count()
10
>>> np.int32(-127).bit_count()
7
(gh-19355)
ndim
and axis
attributes have been added to numpy.AxisError
The The ndim
and axis
parameters are now also stored as attributes
within each numpy.AxisError
instance.
(gh-19459)
windows/arm64
target
Preliminary support for numpy
added support for windows/arm64 target. Please note OpenBLAS
support is not yet available for windows/arm64 target.
(gh-19513)
Added support for LoongArch
LoongArch is a new instruction set, numpy compilation failure on LoongArch architecture, so add the commit.
(gh-19527)
.clang-format
file has been added
A Clang-format is a C/C++ code formatter, together with the added
.clang-format
file, it produces code close enough to the NumPy
C_STYLE_GUIDE for general use. Clang-format version 12+ is required
due to the use of several new features, it is available in Fedora 34 and
Ubuntu Focal among other distributions.
(gh-19754)
is_integer
is now available to numpy.floating
and numpy.integer
Based on its counterpart in Python float
and int
, the numpy floating
point and integer types now support float.is_integer
. Returns True
if the number is finite with integral value, and False
otherwise.
>>> np.float32(-2.0).is_integer()
True
>>> np.float64(3.2).is_integer()
False
>>> np.int32(-2).is_integer()
True
(gh-19803)
Symbolic parser for Fortran dimension specifications
A new symbolic parser has been added to f2py in order to correctly parse dimension specifications. The parser is the basis for future improvements and provides compatibility with Draft Fortran 202x.
(gh-19805)
ndarray
, dtype
and number
are now runtime-subscriptable
Mimicking PEP-585, the numpy.ndarray
,
numpy.dtype
and numpy.number
classes are now subscriptable for
python 3.9 and later. Consequently, expressions that were previously
only allowed in .pyi stub files or with the help of
from __future__ import annotations
are now also legal during runtime.
>>> import numpy as np
>>> from typing import Any
>>> np.ndarray[Any, np.dtype[np.float64]]
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]
(gh-19879)
Improvements
ctypeslib.load_library
can now take any path-like object
All parameters in the can now take any
python:path-like object
{.interpreted-text role="term"}. This includes
the likes of strings, bytes and objects implementing the
__fspath__<os.PathLike.__fspath__>
{.interpreted-text role="meth"}
protocol.
(gh-17530)
smallest_normal
and smallest_subnormal
attributes to finfo
Add The attributes smallest_normal
and smallest_subnormal
are available
as an extension of finfo
class for any floating-point data type. To
use these new attributes, write np.finfo(np.float64).smallest_normal
or np.finfo(np.float64).smallest_subnormal
.
(gh-18536)
numpy.linalg.qr
accepts stacked matrices as inputs
numpy.linalg.qr
is able to produce results for stacked matrices as
inputs. Moreover, the implementation of QR decomposition has been
shifted to C from Python.
(gh-19151)
numpy.fromregex
now accepts os.PathLike
implementations
numpy.fromregex
now accepts objects implementing the
__fspath__<os.PathLike>
protocol, e.g. pathlib.Path
.
(gh-19680)
quantile
and percentile
Add new methods for quantile
and percentile
now have have a method=
keyword argument
supporting 13 different methods. This replaces the interpolation=
keyword argument.
The methods are now aligned with nine methods which can be found in scientific literature and the R language. The remaining methods are the previous discontinuous variations of the default "linear" one.
Please see the documentation of numpy.percentile
for more information.
(gh-19857)
nan<x>
functions
Missing parameters have been added to the A number of the nan<x>
functions previously lacked parameters that
were present in their <x>
-based counterpart, e.g. the where
parameter was present in numpy.mean
but absent from numpy.nanmean
.
The following parameters have now been added to the nan<x>
functions:
- nanmin:
initial
&where
- nanmax:
initial
&where
- nanargmin:
keepdims
&out
- nanargmax:
keepdims
&out
- nansum:
initial
&where
- nanprod:
initial
&where
- nanmean:
where
- nanvar:
where
- nanstd:
where
(gh-20027)
Annotating the main Numpy namespace
Starting from the 1.20 release, PEP 484 type annotations have been included for parts of the NumPy library; annotating the remaining functions being a work in progress. With the release of 1.22 this process has been completed for the main NumPy namespace, which is now fully annotated.
Besides the main namespace, a limited number of sub-packages contain
annotations as well. This includes, among others, numpy.testing
,
numpy.linalg
and numpy.random
(available since 1.21).
(gh-20217)
Vectorize umath module using AVX-512
By leveraging Intel Short Vector Math Library (SVML), 18 umath functions
(exp2
, log2
, log10
, expm1
, log1p
, cbrt
, sin
, cos
, tan
,
arcsin
, arccos
, arctan
, sinh
, cosh
, tanh
, arcsinh
,
arccosh
, arctanh
) are vectorized using AVX-512 instruction set for
both single and double precision implementations. This change is
currently enabled only for Linux users and on processors with AVX-512
instruction set. It provides an average speed up of 32x and 14x for
single and double precision functions respectively.
(gh-19478)
OpenBLAS v0.3.18
Update the OpenBLAS used in testing and in wheels to v0.3.18
(gh-20058)
Checksums
MD5
66757b963ad5835038b9a2a9df852c84 numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
86b7f3a94c09dbd6869614c4d7f9ba5e numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
5184db17d8e5e6ecdc53e2f0a6964c35 numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
6643e9a076cce736cfbe15face4db9db numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6efef45bf63594703c094b2ad729e648 numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a1a21bb0958a3eb920deeef9e745935 numpy-1.22.0-cp310-cp310-win_amd64.whl
45241fb5f31ea46e2b6f1321a63c8e1c numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
472f24a5d35116634fcc57e9bda899bc numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
6c15cf7847b20101ae281ade6121b79e numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
313f0fd99a899a7465511c1418e1031f numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9ae6ecde0cbeadd2a9d7b8ae54285863 numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0f31a7b9e128b0cdafecf98cf1301fc0 numpy-1.22.0-cp38-cp38-win32.whl
f4b45579cf532ea632b890b1df387081 numpy-1.22.0-cp38-cp38-win_amd64.whl
2cb27112b11c16f700e6019f5fd36408 numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
4554a5797a4cb787b5169a8f5482fb95 numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
3780decd94837da6f0816f2feaace9c2 numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
6e519dd5205510dfebcadc6f7fdf9738 numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
89d455bf290f459a70c57620f02d5b69 numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6425f8d7dc779a54b8074e198cea43c9 numpy-1.22.0-cp39-cp39-win32.whl
1b5c670328146975b21b54fa5ef8ec4c numpy-1.22.0-cp39-cp39-win_amd64.whl
05d842127ca85cca12fed3a26b0f5177 numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab751b8d4195f91ae61a402184d16d18 numpy-1.22.0.tar.gz
252de134862a27bd66705d29622edbfe numpy-1.22.0.zip
SHA256
3d22662b4b10112c545c91a0741f2436f8ca979ab3d69d03d19322aa970f9695 numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
11a1f3816ea82eed4178102c56281782690ab5993251fdfd75039aad4d20385f numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
5dc65644f75a4c2970f21394ad8bea1a844104f0fe01f278631be1c7eae27226 numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
42c16cec1c8cf2728f1d539bd55aaa9d6bb48a7de2f41eb944697293ef65a559 numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a97e82c39d9856fe7d4f9b86d8a1e66eff99cf3a8b7ba48202f659703d27c46f numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e41e8951749c4b5c9a2dc5fdbc1a4eec6ab2a140fdae9b460b0f557eed870f4d numpy-1.22.0-cp310-cp310-win_amd64.whl
bece0a4a49e60e472a6d1f70ac6cdea00f9ab80ff01132f96bd970cdd8a9e5a9 numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
818b9be7900e8dc23e013a92779135623476f44a0de58b40c32a15368c01d471 numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
47ee7a839f5885bc0c63a74aabb91f6f40d7d7b639253768c4199b37aede7982 numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
a024181d7aef0004d76fb3bce2a4c9f2e67a609a9e2a6ff2571d30e9976aa383 numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f71d57cc8645f14816ae249407d309be250ad8de93ef61d9709b45a0ddf4050c numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
283d9de87c0133ef98f93dfc09fad3fb382f2a15580de75c02b5bb36a5a159a5 numpy-1.22.0-cp38-cp38-win32.whl
2762331de395739c91f1abb88041f94a080cb1143aeec791b3b223976228af3f numpy-1.22.0-cp38-cp38-win_amd64.whl
76ba7c40e80f9dc815c5e896330700fd6e20814e69da9c1267d65a4d051080f1 numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
0cfe07133fd00b27edee5e6385e333e9eeb010607e8a46e1cd673f05f8596595 numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
6ed0d073a9c54ac40c41a9c2d53fcc3d4d4ed607670b9e7b0de1ba13b4cbfe6f numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
41388e32e40b41dd56eb37fcaa7488b2b47b0adf77c66154d6b89622c110dfe9 numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b55b953a1bdb465f4dc181758570d321db4ac23005f90ffd2b434cc6609a63dd numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5a311ee4d983c487a0ab546708edbdd759393a3dc9cd30305170149fedd23c88 numpy-1.22.0-cp39-cp39-win32.whl
a97a954a8c2f046d3817c2bce16e3c7e9a9c2afffaf0400f5c16df5172a67c9c numpy-1.22.0-cp39-cp39-win_amd64.whl
bb02929b0d6bfab4c48a79bd805bd7419114606947ec8284476167415171f55b numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f2be14ba396780a6f662b8ba1a24466c9cf18a6a386174f614668e58387a13d7 numpy-1.22.0.tar.gz
a955e4128ac36797aaffd49ab44ec74a71c11d6938df83b1285492d277db5397 numpy-1.22.0.zip
v1.21.5
NumPy 1.21.5 Release Notes
NumPy 1.21.5 is a maintenance release that fixes a few bugs discovered after the 1.21.4 release and does some maintenance to extend the 1.21.x lifetime. The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11, you will need to use gcc-11.2+ to avoid problems.
Contributors
A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.
- Bas van Beek
- Charles Harris
- Matti Picus
- Rohit Goswami
- Ross Barnowski
- Sayed Adel
- Sebastian Berg
Pull requests merged
A total of 11 pull requests were merged for this release.
-
#20357: MAINT: Do not forward
__(deep)copy__
calls of_GenericAlias
... - #20462: BUG: Fix float16 einsum fastpaths using wrong tempvar
- #20463: BUG, DIST: Print os error message when the executable not exist
- #20464: BLD: Verify the ability to compile C++ sources before initiating...
-
#20465: BUG: Force
npymath
to respectnpy_longdouble
- #20466: BUG: Fix failure to create aligned, empty structured dtype
-
#20467: ENH: provide a convenience function to replace
npy_load_module
- #20495: MAINT: update wheel to version that supports python3.10
- #20497: BUG: Clear errors correctly in F2PY conversions
- #20613: DEV: add a warningfilter to fix pytest workflow.
- #20618: MAINT: Help boost::python libraries at least not crash
Checksums
MD5
e00a3c2e1461dd2920ab4af6b753d3da numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
50e0526fa29110fb6033fa8285fba4e1 numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
bdbb19e7656d66250aa67bd1c7924764 numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
c5c982a07797c8963b8fec44aae6db09 numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b27b622f58caeeb7f14472651d655e3 numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e545f6f85f950f57606efcaeeac2e50a numpy-1.21.5-cp310-cp310-win_amd64.whl
5c36eefdcb039c0d4db8882fddbeb695 numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
b5d080e0fd8b658419b3636f1cf5dc3a numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
ec1a9a1333a2bf61897f105ecd9f212a numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d5ab050300748f20cdc9c6e17ba8ffd4 numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b7498a1d0ea7273ef1af56d58e02a550 numpy-1.21.5-cp37-cp37m-win32.whl
f55c7ecfd35769fb3f6a408c0c123372 numpy-1.21.5-cp37-cp37m-win_amd64.whl
843e3431ba4b56d3fc36b7c4cb6fc10c numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
4721e71bdc5697d310cd3a6b6cd60741 numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
2169fb8ed40046e1e33d187fc85b91bb numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
52de43977749109509ee708a142a7d97 numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
703c0f54c5ede8cc0c648ef66cafac47 numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
50432f9cf1d5b2278ceb7a96890353ed numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c4c5336136e045d02c60ba8115eb6a2 numpy-1.21.5-cp38-cp38-win32.whl
c2e0744164f8255be70725ef42bc3f5b numpy-1.21.5-cp38-cp38-win_amd64.whl
b16dd7103117d051cb6c3b6c4434f7d2 numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
220dd07273aeb0b2ca8f0e4f543e43c3 numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
1dd09ad75eff93b274f650871e0b9287 numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
6801263f51d3b13420b59ff84c716869 numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
035bde3955ae2f62ada65084d71a7421 numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
09f202576cbd0ed6121cff10cdea831a numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c6a44c90c2d5124fea6cedbbf575e252 numpy-1.21.5-cp39-cp39-win32.whl
bbc11e31406a9fc48c18a41259bc8866 numpy-1.21.5-cp39-cp39-win_amd64.whl
5be2b6f6cf6fb3a3d98231e891260624 numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8bc9ff24bac9bf4268372cefea8f0b6b numpy-1.21.5.tar.gz
88b5438ded7992fa2e6a810d43cd32a1 numpy-1.21.5.zip
SHA256
301e408a052fdcda5cdcf03021ebafc3c6ea093021bf9d1aa47c54d48bdad166 numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
a7e8f6216f180f3fd4efb73de5d1eaefb5f5a1ee5b645c67333033e39440e63a numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
fc7a7d7b0ed72589fd8b8486b9b42a564f10b8762be8bd4d9df94b807af4a089 numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
58ca1d7c8aef6e996112d0ce873ac9dfa1eaf4a1196b4ff7ff73880a09923ba7 numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc4b2fb01f1b4ddbe2453468ea0719f4dbb1f5caa712c8b21bb3dd1480cd30d9 numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc1b30205d138d1005adb52087ff45708febbef0e420386f58664f984ef56954 numpy-1.21.5-cp310-cp310-win_amd64.whl
08de8472d9f7571f9d51b27b75e827f5296295fa78817032e84464be8bb905bc numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
4fe6a006557b87b352c04596a6e3f12a57d6e5f401d804947bd3188e6b0e0e76 numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
3d893b0871322eaa2f8c7072cdb552d8e2b27645b7875a70833c31e9274d4611 numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
341dddcfe3b7b6427a28a27baa59af5ad51baa59bfec3264f1ab287aa3b30b13 numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ca9c23848292c6fe0a19d212790e62f398fd9609aaa838859be8459bfbe558aa numpy-1.21.5-cp37-cp37m-win32.whl
025b497014bc33fc23897859350f284323f32a2fff7654697f5a5fc2a19e9939 numpy-1.21.5-cp37-cp37m-win_amd64.whl
3a5098df115340fb17fc93867317a947e1dcd978c3888c5ddb118366095851f8 numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
311283acf880cfcc20369201bd75da907909afc4666966c7895cbed6f9d2c640 numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
b545ebadaa2b878c8630e5bcdb97fc4096e779f335fc0f943547c1c91540c815 numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
c5562bcc1a9b61960fc8950ade44d00e3de28f891af0acc96307c73613d18f6e numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
eed2afaa97ec33b4411995be12f8bdb95c87984eaa28d76cf628970c8a2d689a numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
61bada43d494515d5b122f4532af226fdb5ee08fe5b5918b111279843dc6836a numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b9d6b14fc9a4864b08d1ba57d732b248f0e482c7b2ff55c313137e3ed4d8449 numpy-1.21.5-cp38-cp38-win32.whl
dbce7adeb66b895c6aaa1fad796aaefc299ced597f6fbd9ceddb0dd735245354 numpy-1.21.5-cp38-cp38-win_amd64.whl
507c05c7a37b3683eb08a3ff993bd1ee1e6c752f77c2f275260533b265ecdb6c numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
00c9fa73a6989895b8815d98300a20ac993c49ac36c8277e8ffeaa3631c0dbbb numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
69a5a8d71c308d7ef33ef72371c2388a90e3495dbb7993430e674006f94797d5 numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
2d8adfca843bc46ac199a4645233f13abf2011a0b2f4affc5c37cd552626f27b numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c293d3c0321996cd8ffe84215ffe5d269fd9d1d12c6f4ffe2b597a7c30d3e593 numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
3c978544be9e04ed12016dd295a74283773149b48f507d69b36f91aa90a643e5 numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2a9add27d7fc0fdb572abc3b2486eb3b1395da71e0254c5552b2aad2a18b5441 numpy-1.21.5-cp39-cp39-win32.whl
1964db2d4a00348b7a60ee9d013c8cb0c566644a589eaa80995126eac3b99ced numpy-1.21.5-cp39-cp39-win_amd64.whl
a7c4b701ca418cd39e28ec3b496e6388fe06de83f5f0cb74794fa31cfa384c02 numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
1a7ee0ffb35dc7489aebe5185a483f4c43b0d2cf784c3c9940f975a7dde56506 numpy-1.21.5.tar.gz
6a5928bc6241264dce5ed509e66f33676fc97f464e7a919edc672fb5532221ee numpy-1.21.5.zip
v1.21.4
NumPy 1.21.4 Release Notes
The NumPy 1.21.4 is a maintenance release that fixes a few bugs discovered after 1.21.3. The most important fix here is a fix for the NumPy header files to make them work for both x86_64 and M1 hardware when included in the Mac universal2 wheels. Previously, the header files only worked for M1 and this caused problems for folks building x86_64 extensions. This problem was not seen before Python 3.10 because there were thin wheels for x86_64 that had precedence. This release also provides thin x86_64 Mac wheels for Python 3.10.
The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11, you will need to use gcc-11.2+ to avoid problems.
Contributors
A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.
- Bas van Beek
- Charles Harris
- Isuru Fernando
- Matthew Brett
- Sayed Adel
- Sebastian Berg
- 傅立业(Chris Fu) +
Pull requests merged
A total of 9 pull requests were merged for this release.
-
#20278: BUG: Fix shadowed reference of
dtype
in type stub - #20293: BUG: Fix headers for universal2 builds
-
#20294: BUG:
VOID_nonzero
could sometimes mutate alignment flag - #20295: BUG: Do not use nonzero fastpath on unaligned arrays
- #20296: BUG: Distutils patch to allow for 2 as a minor version (!)
- #20297: BUG, SIMD: Fix 64-bit/8-bit integer division by a scalar
- #20298: BUG, SIMD: Workaround broadcasting SIMD 64-bit integers on MSVC...
- #20300: REL: Prepare for the NumPy 1.21.4 release.
-
#20302: TST: Fix a
Arrayterator
typing test failure
Checksums
MD5
95486a3ed027c926fb3fc279db6d843e numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
9f57fad74762f7665669af33583a3dc9 numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
719a9053aef01a067ce44ede2281eef9 numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
72035d101774fd03beff391927f59aa9 numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5813e7a378a6e3f5c269c23f61eff4d9 numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b88a1bc4f08dfb154d5a07d15e387af6 numpy-1.21.4-cp310-cp310-win_amd64.whl
f0cc946d2f4ab4df7cc7e0cc8cfd429e numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
1234643306ce481f0e5f801ddf3f1099 numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
b9208ce1695ba61ab2932c7ce7285d1d numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9804fe2011618bf2d7b8d92f6860b2e3 numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ad3a06f974acd61326fd66c098df5bc numpy-1.21.4-cp37-cp37m-win32.whl
172301389f1532b2d9130362580e1e22 numpy-1.21.4-cp37-cp37m-win_amd64.whl
a037bf88979ae0d4699a0cdce92bbab3 numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
ba94609688f575cc8dce84f1512db116 numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
c78edc0ae8c9a5d8d0f9e3eb6dabd0b3 numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
d683b6f6af46806391579d528a040451 numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
df631f776716aeb3fd705f3659599b9e numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b1cbca49d24c7ba43d377feb425afdce numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b5c214bc0f060dbb0287c15dde4673d numpy-1.21.4-cp38-cp38-win32.whl
2307cf9f3c02f6cdad448a681c272974 numpy-1.21.4-cp38-cp38-win_amd64.whl
fc02b5a068e29b2dd2de19c7ddd69926 numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
f16068540001de8a3d8f096830c97ea2 numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
80562c39cfbdf1af9bb43b2ea5e45b6d numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
6c103bec3085e5a6ea92cf7f6e4189ab numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
9d715ba5f7596a39eb631f2dae85d203 numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8b8cf8c7b093419ff75ed1dd2eaa18ae numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
404200b858b7addd03f6cdd5a484d30a numpy-1.21.4-cp39-cp39-win32.whl
cdab6a1bf1b86021526d08a60219a6ad numpy-1.21.4-cp39-cp39-win_amd64.whl
70ca6b591e844fdcb8c22175f094d3b4 numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
06019c1116b3e2791bd507f898257e7f numpy-1.21.4.tar.gz
b3c4477a027d5b6fba5e1065064fd076 numpy-1.21.4.zip
SHA256
8890b3360f345e8360133bc078d2dacc2843b6ee6059b568781b15b97acbe39f numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
69077388c5a4b997442b843dbdc3a85b420fb693ec8e33020bb24d647c164fa5 numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
e89717274b41ebd568cd7943fc9418eeb49b1785b66031bc8a7f6300463c5898 numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
0b78ecfa070460104934e2caf51694ccd00f37d5e5dbe76f021b1b0b0d221823 numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
615d4e328af7204c13ae3d4df7615a13ff60a49cb0d9106fde07f541207883ca numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1403b4e2181fc72664737d848b60e65150f272fe5a1c1cbc16145ed43884065a numpy-1.21.4-cp310-cp310-win_amd64.whl
74b85a17528ca60cf98381a5e779fc0264b4a88b46025e6bcbe9621f46bb3e63 numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
92aafa03da8658609f59f18722b88f0a73a249101169e28415b4fa148caf7e41 numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
5d95668e727c75b3f5088ec7700e260f90ec83f488e4c0aaccb941148b2cd377 numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f5162ec777ba7138906c9c274353ece5603646c6965570d82905546579573f73 numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
81225e58ef5fce7f1d80399575576fc5febec79a8a2742e8ef86d7b03beef49f numpy-1.21.4-cp37-cp37m-win32.whl
32fe5b12061f6446adcbb32cf4060a14741f9c21e15aaee59a207b6ce6423469 numpy-1.21.4-cp37-cp37m-win_amd64.whl
c449eb870616a7b62e097982c622d2577b3dbc800aaf8689254ec6e0197cbf1e numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
2e4ed57f45f0aa38beca2a03b6532e70e548faf2debbeb3291cfc9b315d9be8f numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
1247ef28387b7bb7f21caf2dbe4767f4f4175df44d30604d42ad9bd701ebb31f numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
34f3456f530ae8b44231c63082c8899fe9c983fd9b108c997c4b1c8c2d435333 numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
4c9c23158b87ed0e70d9a50c67e5c0b3f75bcf2581a8e34668d4e9d7474d76c6 numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e4799be6a2d7d3c33699a6f77201836ac975b2e1b98c2a07f66a38f499cb50ce numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bc988afcea53e6156546e5b2885b7efab089570783d9d82caf1cfd323b0bb3dd numpy-1.21.4-cp38-cp38-win32.whl
170b2a0805c6891ca78c1d96ee72e4c3ed1ae0a992c75444b6ab20ff038ba2cd numpy-1.21.4-cp38-cp38-win_amd64.whl
fde96af889262e85aa033f8ee1d3241e32bf36228318a61f1ace579df4e8170d numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
c885bfc07f77e8fee3dc879152ba993732601f1f11de248d4f357f0ffea6a6d4 numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
9e6f5f50d1eff2f2f752b3089a118aee1ea0da63d56c44f3865681009b0af162 numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
ad010846cdffe7ec27e3f933397f8a8d6c801a48634f419e3d075db27acf5880 numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c74c699b122918a6c4611285cc2cad4a3aafdb135c22a16ec483340ef97d573c numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9864424631775b0c052f3bd98bc2712d131b3e2cd95d1c0c68b91709170890b0 numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b1e2312f5b8843a3e4e8224b2b48fe16119617b8fc0a54df8f50098721b5bed2 numpy-1.21.4-cp39-cp39-win32.whl
e3c3e990274444031482a31280bf48674441e0a5b55ddb168f3a6db3e0c38ec8 numpy-1.21.4-cp39-cp39-win_amd64.whl
a3deb31bc84f2b42584b8c4001c85d1934dbfb4030827110bc36bfd11509b7bf numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
5d412381aa489b8be82ac5c6a9e99c3eb3f754245ad3f90ab5c339d92f25fb47 numpy-1.21.4.tar.gz
e6c76a87633aa3fa16614b61ccedfae45b91df2767cf097aa9c933932a7ed1e0 numpy-1.21.4.zip
v1.21.3
NumPy 1.21.3 Release Notes
The NumPy 1.21.3 is a maintenance release the fixes a few bugs discovered after 1.21.2. It also provides 64 bit Python 3.10.0 wheels. Note a few oddities about Python 3.10:
- There are no 32 bit wheels for Windows, Mac, or Linux.
- The Mac Intel builds are only available in universal2 wheels.
The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11 you will need to use gcc-11.2+ to avoid problems.
Contributors
A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.
- Aaron Meurer
- Bas van Beek
- Charles Harris
- Developer-Ecosystem-Engineering +
- Kevin Sheppard
- Sebastian Berg
- Warren Weckesser
Pull requests merged
A total of 8 pull requests were merged for this release.
-
#19745: ENH: Add dtype-support to 3
`generic
/ndarray
methods - #19955: BUG: Resolve Divide by Zero on Apple silicon + test failures...
- #19958: MAINT: Mark type-check-only ufunc subclasses as ufunc aliases...
- #19994: BUG: np.tan(np.inf) test failure
- #20080: BUG: Correct incorrect advance in PCG with emulated int128
- #20081: BUG: Fix NaT handling in the PyArray_CompareFunc for datetime...
- #20082: DOC: Ensure that we add documentation also as to the dict for...
- #20106: BUG: core: result_type(0, np.timedelta64(4)) would seg. fault.
Checksums
MD5
9acea9630856659ba48fdb582ecc37b4 numpy-1.21.3-cp310-cp310-macosx_10_9_universal2.whl
a70f80a4e74a3153a8307c4f0ea8d13d numpy-1.21.3-cp310-cp310-macosx_11_0_arm64.whl
13cfe83efd261ea1c3d1eb02c1d3af83 numpy-1.21.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8576bfd867834182269f72abbaa2e81e numpy-1.21.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8ac48f503f1e22c0c2b5d056772aca27 numpy-1.21.3-cp310-cp310-win_amd64.whl
cbe0d0d7623de3c2c7593f673d1a880a numpy-1.21.3-cp37-cp37m-macosx_10_9_x86_64.whl
0967b18baba13e511c7eb48902a62b39 numpy-1.21.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
da54c9566f3e3f8c7d60efebfdf7e1ae numpy-1.21.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
0aa000f3c10cf74bf47770577384b5c8 numpy-1.21.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5683501bf91be25c53c52e3b083098c3 numpy-1.21.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
89e15d979533f8a314e0ab0648ee7153 numpy-1.21.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
a093fea475b5ed18bd21b3c79e68e388 numpy-1.21.3-cp37-cp37m-win32.whl
f906001213ed0902b1aecfaa12224e94 numpy-1.21.3-cp37-cp37m-win_amd64.whl
88a2cd378412220d618473dd273baf04 numpy-1.21.3-cp38-cp38-macosx_10_9_universal2.whl
1bc55202f604e30f338bc2ed27b561bc numpy-1.21.3-cp38-cp38-macosx_10_9_x86_64.whl
9555dc6de8748958434e8f2feba98494 numpy-1.21.3-cp38-cp38-macosx_11_0_arm64.whl
93ad32cc87866e9242156bdadc61e5f5 numpy-1.21.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
7cb0b7dd6aee667ecdccae1829260186 numpy-1.21.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
34e6f5f9e9534ef8772f024170c2bd2d numpy-1.21.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54e6abfb8f600de2ccd1649b1fca820b numpy-1.21.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
260ba58f2dc64e779eac7318ec92f36c numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
889202c6bdaf8c1ae0803925e9e1a8f7 numpy-1.21.3-cp38-cp38-win32.whl
980303a7e6317faf9a56ba8fc80795d9 numpy-1.21.3-cp38-cp38-win_amd64.whl
44d6bd26fb910710ab4002d0028c9020 numpy-1.21.3-cp39-cp39-macosx_10_9_universal2.whl
6f5b02152bd0b08a77b79657788ce59c numpy-1.21.3-cp39-cp39-macosx_10_9_x86_64.whl
ad05d5c412d15e7880cd65cc6cdd4aac numpy-1.21.3-cp39-cp39-macosx_11_0_arm64.whl
5b61a91221931af4a78c3bd20925a91f numpy-1.21.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
df7344ae04c5a54249fa1b63a256ce61 numpy-1.21.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
c653a096da47b64b42e8f1536a21f7d4 numpy-1.21.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d35451ba1c37f96e032bc6f75ccdf7 numpy-1.21.3-cp39-cp39-win32.whl
b2e1dc59b6fa224ce11728d94be740a6 numpy-1.21.3-cp39-cp39-win_amd64.whl
8ce925a0fcbc1062985026215d369276 numpy-1.21.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b8e6b7165f105bde0b45cd9ae34bfe20 numpy-1.21.3.tar.gz
59d986f5ccf3edfb7d4d14949c6666ed numpy-1.21.3.zip
SHA256
508b0b513fa1266875524ba8a9ecc27b02ad771fe1704a16314dc1a816a68737 numpy-1.21.3-cp310-cp310-macosx_10_9_universal2.whl
5dfe9d6a4c39b8b6edd7990091fea4f852888e41919d0e6722fe78dd421db0eb numpy-1.21.3-cp310-cp310-macosx_11_0_arm64.whl
8a10968963640e75cc0193e1847616ab4c718e83b6938ae74dea44953950f6b7 numpy-1.21.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
49c6249260890e05b8111ebfc391ed58b3cb4b33e63197b2ec7f776e45330721 numpy-1.21.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8f4625536926a155b80ad2bbff44f8cc59e9f2ad14cdda7acf4c135b4dc8ff2 numpy-1.21.3-cp310-cp310-win_amd64.whl
e54af82d68ef8255535a6cdb353f55d6b8cf418a83e2be3569243787a4f4866f numpy-1.21.3-cp37-cp37m-macosx_10_9_x86_64.whl
f41b018f126aac18583956c54544db437f25c7ee4794bcb23eb38bef8e5e192a numpy-1.21.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
50cd26b0cf6664cb3b3dd161ba0a09c9c1343db064e7c69f9f8b551f5104d654 numpy-1.21.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
4cc9b512e9fb590797474f58b7f6d1f1b654b3a94f4fa8558b48ca8b3cfc97cf numpy-1.21.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88a5d6b268e9ad18f3533e184744acdaa2e913b13148160b1152300c949bbb5f numpy-1.21.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
3c09418a14471c7ae69ba682e2428cae5b4420a766659605566c0fa6987f6b7e numpy-1.21.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
90bec6a86b348b4559b6482e2b684db4a9a7eed1fa054b86115a48d58fbbf62a numpy-1.21.3-cp37-cp37m-win32.whl
043e83bfc274649c82a6f09836943e4a4aebe5e33656271c7dbf9621dd58b8ec numpy-1.21.3-cp37-cp37m-win_amd64.whl
75621882d2230ab77fb6a03d4cbccd2038511491076e7964ef87306623aa5272 numpy-1.21.3-cp38-cp38-macosx_10_9_universal2.whl
188031f833bbb623637e66006cf75e933e00e7231f67e2b45cf8189612bb5dc3 numpy-1.21.3-cp38-cp38-macosx_10_9_x86_64.whl
160ccc1bed3a8371bf0d760971f09bfe80a3e18646620e9ded0ad159d9749baa numpy-1.21.3-cp38-cp38-macosx_11_0_arm64.whl
29fb3dcd0468b7715f8ce2c0c2d9bbbaf5ae686334951343a41bd8d155c6ea27 numpy-1.21.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
32437f0b275c1d09d9c3add782516413e98cd7c09e6baf4715cbce781fc29912 numpy-1.21.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e606e6316911471c8d9b4618e082635cfe98876007556e89ce03d52ff5e8fcf0 numpy-1.21.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a99a6b067e5190ac6d12005a4d85aa6227c5606fa93211f86b1dafb16233e57d numpy-1.21.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
dde972a1e11bb7b702ed0e447953e7617723760f420decb97305e66fb4afc54f numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
fe52dbe47d9deb69b05084abd4b0df7abb39a3c51957c09f635520abd49b29dd numpy-1.21.3-cp38-cp38-win32.whl
75eb7cadc8da49302f5b659d40ba4f6d94d5045fbd9569c9d058e77b0514c9e4 numpy-1.21.3-cp38-cp38-win_amd64.whl
2a6ee9620061b2a722749b391c0d80a0e2ae97290f1b32e28d5a362e21941ee4 numpy-1.21.3-cp39-cp39-macosx_10_9_universal2.whl
5c4193f70f8069550a1788bd0cd3268ab7d3a2b70583dfe3b2e7f421e9aace06 numpy-1.21.3-cp39-cp39-macosx_10_9_x86_64.whl
28f15209fb535dd4c504a7762d3bc440779b0e37d50ed810ced209e5cea60d96 numpy-1.21.3-cp39-cp39-macosx_11_0_arm64.whl
c6c2d535a7beb1f8790aaa98fd089ceab2e3dd7ca48aca0af7dc60e6ef93ffe1 numpy-1.21.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bffa2eee3b87376cc6b31eee36d05349571c236d1de1175b804b348dc0941e3f numpy-1.21.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
cc14e7519fab2a4ed87d31f99c31a3796e4e1fe63a86ebdd1c5a1ea78ebd5896 numpy-1.21.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd0482f3fc547f1b1b5d6a8b8e08f63fdc250c58ce688dedd8851e6e26cff0f3 numpy-1.21.3-cp39-cp39-win32.whl
300321e3985c968e3ae7fbda187237b225f3ffe6528395a5b7a5407f73cf093e numpy-1.21.3-cp39-cp39-win_amd64.whl
98339aa9911853f131de11010f6dd94c8cec254d3d1f7261528c3b3e3219f139 numpy-1.21.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d0bba24083c01ae43457514d875f10d9ce4c1125d55b1e2573277b2410f2d068 numpy-1.21.3.tar.gz
63571bb7897a584ca3249c86dd01c10bcb5fe4296e3568b2e9c1a55356b6410e numpy-1.21.3.zip
v1.21.2
NumPy 1.21.2 Release Notes
The NumPy 1.21.2 is maintenance release that fixes bugs discovered after 1.21.1. It also provides 64 bit manylinux Python 3.10.0rc1 wheels for downstream testing. Note that Python 3.10 is not yet final. There is also preliminary support for Windows on ARM64 builds, but there is no OpenBLAS for that platform and no wheels are available.
The Python versions supported for this release are 3.7-3.9. The 1.21.x series is compatible with Python 3.10.0rc1 and Python 3.10 will be officially supported after it is released. The previous problems with gcc-11.1 have been fixed by gcc-11.2, check your version if you are using gcc-11.
Contributors
A total of 10 people contributed to this release. People with a "+" by their names contributed a patch for the first time.
- Bas van Beek
- Carl Johnsen +
- Charles Harris
- Gwyn Ciesla +
- Matthieu Dartiailh
- Matti Picus
- Niyas Sait +
- Ralf Gommers
- Sayed Adel
- Sebastian Berg
Pull requests merged
A total of 18 pull requests were merged for this release.
-
#19497: MAINT: set Python version for 1.21.x to
<3.11
-
#19533: BUG: Fix an issue wherein importing
numpy.typing
could raise - #19646: MAINT: Update Cython version for Python 3.10.
- #19648: TST: Bump the python 3.10 test version from beta4 to rc1
- #19651: TST: avoid distutils.sysconfig in runtests.py
- #19652: MAINT: add missing dunder method to nditer type hints
-
#19656: BLD, SIMD: Fix testing extra checks when
-Werror
isn't applicable... - #19657: BUG: Remove logical object ufuncs with bool output
- #19658: MAINT: Include .coveragerc in source distributions to support...
- #19659: BUG: Fix bad write in masked iterator output copy paths
- #19660: ENH: Add support for windows on arm targets
- #19661: BUG: add base to templated arguments for platlib
- #19662: BUG,DEP: Non-default UFunc signature/dtype usage should be deprecated
- #19666: MAINT: Add Python 3.10 to supported versions.
-
#19668: TST,BUG: Sanitize path-separators when running
runtest.py
- #19671: BLD: load extra flags when checking for libflame
- #19676: BLD: update circleCI docker image
- #19677: REL: Prepare for 1.21.2 release.
Checksums
MD5
c4d72c5f8aff59b5e48face558441e9f numpy-1.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eb09d0bfc0bc39ce3e323182ae779fcb numpy-1.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e0bb19ea8cc13a5152085aa42d850077 numpy-1.21.2-cp37-cp37m-macosx_10_9_x86_64.whl
af7d21992179dfa3669a2a238b94a980 numpy-1.21.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
9acbaf0074af75d66ca8676b16cec03a numpy-1.21.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
86b755c7ece248e5586a6a58259aa432 numpy-1.21.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b45fbbb0ffabcabcc6dc4cf957713d45 numpy-1.21.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
6f23a3050b1482f9708d36928348d75d numpy-1.21.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
ee45e263e6700b745c43511297385fe1 numpy-1.21.2-cp37-cp37m-win32.whl
6f587dc9ee9ec8700e77df4f3f987911 numpy-1.21.2-cp37-cp37m-win_amd64.whl
e500c1eae3903b7498886721b835d086 numpy-1.21.2-cp38-cp38-macosx_10_9_universal2.whl
ddef2b45ff5526e6314205108f2e3524 numpy-1.21.2-cp38-cp38-macosx_10_9_x86_64.whl
66b5a212ee2fe747cfc19f13dbfc2d15 numpy-1.21.2-cp38-cp38-macosx_11_0_arm64.whl
3ebfe9bcd744c57d3d189394fbbf04de numpy-1.21.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
155a35f990b2e673cb7b361c83fa2313 numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
89e2268d8607b6b363337fafde9fe6c9 numpy-1.21.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e13968b5f61a3b2f33d4053da8ceaaf1 numpy-1.21.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
5bede1a84624d538d97513006f97fc06 numpy-1.21.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
351b5115ee56f1b598bfa9b479a2492c numpy-1.21.2-cp38-cp38-win32.whl
8a36334d9d183b1ef3e4d3d23b7d0cb8 numpy-1.21.2-cp38-cp38-win_amd64.whl
b6aee8cf57f84da10b38566bde93056c numpy-1.21.2-cp39-cp39-macosx_10_9_universal2.whl
20beaff42d793cb148621e0230d1b650 numpy-1.21.2-cp39-cp39-macosx_10_9_x86_64.whl
6e348361f3b8b75267dc27f3a6530944 numpy-1.21.2-cp39-cp39-macosx_11_0_arm64.whl
809bcd25dc485f31e2c13903d6ac748e numpy-1.21.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
ff4256d8940c6bdce48364af37f99072 numpy-1.21.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b8b19e6667e39feef9f7f2e030945199 numpy-1.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eedae53f1929779387476e7842dc5cb3 numpy-1.21.2-cp39-cp39-win32.whl
704f66b7ede6778283c33eea7a5b8b95 numpy-1.21.2-cp39-cp39-win_amd64.whl
8c5d2a0172f6f6861833a355b1bc57b0 numpy-1.21.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
55c11984b0a0ae28baa118052983f355 numpy-1.21.2.tar.gz
5638d5dae3ca387be562912312db842e numpy-1.21.2.zip
SHA256
52a664323273c08f3b473548bf87c8145b7513afd63e4ebba8496ecd3853df13 numpy-1.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
51a7b9db0a2941434cd930dacaafe0fc9da8f3d6157f9d12f761bbde93f46218 numpy-1.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9f2dc79c093f6c5113718d3d90c283f11463d77daa4e83aeeac088ec6a0bda52 numpy-1.21.2-cp37-cp37m-macosx_10_9_x86_64.whl
a55e4d81c4260386f71d22294795c87609164e22b28ba0d435850fbdf82fc0c5 numpy-1.21.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
426a00b68b0d21f2deb2ace3c6d677e611ad5a612d2c76494e24a562a930c254 numpy-1.21.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
298156f4d3d46815eaf0fcf0a03f9625fc7631692bd1ad851517ab93c3168fc6 numpy-1.21.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
09858463db6dd9f78b2a1a05c93f3b33d4f65975771e90d2cf7aadb7c2f66edf numpy-1.21.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
805459ad8baaf815883d0d6f86e45b3b0b67d823a8f3fa39b1ed9c45eaf5edf1 numpy-1.21.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
f545c082eeb09ae678dd451a1b1dbf17babd8a0d7adea02897a76e639afca310 numpy-1.21.2-cp37-cp37m-win32.whl
b160b9a99ecc6559d9e6d461b95c8eec21461b332f80267ad2c10394b9503496 numpy-1.21.2-cp37-cp37m-win_amd64.whl
a5109345f5ce7ddb3840f5970de71c34a0ff7fceb133c9441283bb8250f532a3 numpy-1.21.2-cp38-cp38-macosx_10_9_universal2.whl
209666ce9d4a817e8a4597cd475b71b4878a85fa4b8db41d79fdb4fdee01dde2 numpy-1.21.2-cp38-cp38-macosx_10_9_x86_64.whl
c01b59b33c7c3ba90744f2c695be571a3bd40ab2ba7f3d169ffa6db3cfba614f numpy-1.21.2-cp38-cp38-macosx_11_0_arm64.whl
e42029e184008a5fd3d819323345e25e2337b0ac7f5c135b7623308530209d57 numpy-1.21.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
7fdc7689daf3b845934d67cb221ba8d250fdca20ac0334fea32f7091b93f00d3 numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
550564024dc5ceee9421a86fc0fb378aa9d222d4d0f858f6669eff7410c89bef numpy-1.21.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bf75d5825ef47aa51d669b03ce635ecb84d69311e05eccea083f31c7570c9931 numpy-1.21.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
a9da45b748caad72ea4a4ed57e9cd382089f33c5ec330a804eb420a496fa760f numpy-1.21.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
e167b9805de54367dcb2043519382be541117503ce99e3291cc9b41ca0a83557 numpy-1.21.2-cp38-cp38-win32.whl
466e682264b14982012887e90346d33435c984b7fead7b85e634903795c8fdb0 numpy-1.21.2-cp38-cp38-win_amd64.whl
dd0e3651d210068d13e18503d75aaa45656eef51ef0b261f891788589db2cc38 numpy-1.21.2-cp39-cp39-macosx_10_9_universal2.whl
92a0ab128b07799dd5b9077a9af075a63467d03ebac6f8a93e6440abfea4120d numpy-1.21.2-cp39-cp39-macosx_10_9_x86_64.whl
fde50062d67d805bc96f1a9ecc0d37bfc2a8f02b937d2c50824d186aa91f2419 numpy-1.21.2-cp39-cp39-macosx_11_0_arm64.whl
640c1ccfd56724f2955c237b6ccce2e5b8607c3bc1cc51d3933b8c48d1da3723 numpy-1.21.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
5de64950137f3a50b76ce93556db392e8f1f954c2d8207f78a92d1f79aa9f737 numpy-1.21.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b342064e647d099ca765f19672696ad50c953cac95b566af1492fd142283580f numpy-1.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
30fc68307c0155d2a75ad19844224be0f2c6f06572d958db4e2053f816b859ad numpy-1.21.2-cp39-cp39-win32.whl
b5e8590b9245803c849e09bae070a8e1ff444f45e3f0bed558dd722119eea724 numpy-1.21.2-cp39-cp39-win_amd64.whl
d96a6a7d74af56feb11e9a443150216578ea07b7450f7c05df40eec90af7f4a7 numpy-1.21.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
76af194fbc117934ec5bbe2ff15177adbd05aeed23f18ee209ed88edcd777e05 numpy-1.21.2.tar.gz
423216d8afc5923b15df86037c6053bf030d15cc9e3224206ef868c2d63dd6dc numpy-1.21.2.zip
v1.21.1
NumPy 1.21.1 Release Notes
The NumPy 1.21.1 is maintenance release that fixes bugs discovered after the 1.21.0 release and updates OpenBLAS to v0.3.17 to deal with problems on arm64.
The Python versions supported for this release are 3.7-3.9. The 1.21.x series is compatible with development Python 3.10. Python 3.10 will be officially supported after it is released.
- Optimization level -O3 results in many incorrect warnings when running the tests.
- On some hardware NumPY will hang in an infinite loop.
Contributors
A total of 11 people contributed to this release. People with a "+" by their names contributed a patch for the first time.
- Bas van Beek
- Charles Harris
- Ganesh Kathiresan
- Gregory R. Lee
- Hugo Defois +
- Kevin Sheppard
- Matti Picus
- Ralf Gommers
- Sayed Adel
- Sebastian Berg
- Thomas J. Fan
Pull requests merged
A total of 26 pull requests were merged for this release.
-
#19311: REV,BUG: Replace
NotImplemented
withtyping.Any
-
#19324: MAINT: Fixed the return-dtype of
ndarray.real
andimag
-
#19330: MAINT: Replace
"dtype[Any]"
withdtype
in the definiton of... - #19342: DOC: Fix some docstrings that crash pdf generation.
- #19343: MAINT: bump scipy-mathjax
- #19347: BUG: Fix arr.flat.index for large arrays and big-endian machines
-
#19348: ENH: add
numpy.f2py.get_include
function - #19349: BUG: Fix reference count leak in ufunc dtype handling
-
#19350: MAINT: Annotate missing attributes of
np.number
subclasses - #19351: BUG: Fix cast safety and comparisons for zero sized voids
- #19352: BUG: Correct Cython declaration in random
- #19353: BUG: protect against accessing base attribute of a NULL subarray
- #19365: BUG, SIMD: Fix detecting AVX512 features on Darwin
-
#19366: MAINT: remove
print()
's in distutils template handling - #19390: ENH: SIMD architectures to show_config
- #19391: BUG: Do not raise deprecation warning for all nans in unique...
- #19392: BUG: Fix NULL special case in object-to-any cast code
- #19430: MAINT: Use arm64-graviton2 for testing on travis
- #19495: BUILD: update OpenBLAS to v0.3.17
- #19496: MAINT: Avoid unicode characters in division SIMD code comments
- #19499: BUG, SIMD: Fix infinite loop during count non-zero on GCC-11
- #19500: BUG: fix a numpy.npiter leak in npyiter_multi_index_set
-
#19501: TST: Fix a
GenericAlias
test failure for python 3.9.0 - #19502: MAINT: Start testing with Python 3.10.0b3.
- #19503: MAINT: Add missing dtype overloads for object- and ctypes-based...
- #19510: REL: Prepare for NumPy 1.21.1 release.
Checksums
MD5
d88af78c155cb92ce5535724ed13ed73 numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl
946e54ec9d174ec90db8ae07a4c4ae2f numpy-1.21.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
84d7f8534fa3ce1a8c2e2eab18e514de numpy-1.21.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
2e256d7862047967f2a7dbff8b8e9d6c numpy-1.21.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4887ff09cc0652f3f1d9e0f40d1add63 numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
bbe00679ce0ae484bb46776f64e00e32 numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
b8eff5ba6bb920f3e65409abcfe7a55e numpy-1.21.1-cp37-cp37m-win32.whl
d6ab781ad4537a818663a37392bdf647 numpy-1.21.1-cp37-cp37m-win_amd64.whl
f974f7a90567e082b16817e1218eb059 numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl
37fb814042195516db4c5eedc23f65ef numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl
2840e0ed51c8ebfb6fded7f1acfed810 numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl
d87ed548450f324a3a6a3a230991e90a numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
e5e0e271fb18986887920f24b9ad8ec3 numpy-1.21.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f060727f195388df3f3c1e2c43a8d247 numpy-1.21.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
26b0cc05d6f59241f401c16a6fe9300e numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
dac4489fdaeffd24d402a555e61b4087 numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
c248a8f07bb458660274eab769dcc1e2 numpy-1.21.1-cp38-cp38-win32.whl
52386872b66b108de80b5447d0e3f6b1 numpy-1.21.1-cp38-cp38-win_amd64.whl
1a730aa7303421f31c2bca5a343010bb numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl
141701393752d472456d4a15f9a554e4 numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl
33a9c001675f708aebc06f0a653378c1 numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl
6b9482c5090f532285313ad2cf48d319 numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
94fa7591ad4e51a85cb17bcec170b986 numpy-1.21.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f580b2ce2fb9cead163bab3f1d88fba7 numpy-1.21.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
238930d877b5d8a012b5b1bbc994ebb1 numpy-1.21.1-cp39-cp39-win32.whl
4014c63ac2a1c3e1df95f76feb14816e numpy-1.21.1-cp39-cp39-win_amd64.whl
7cff22c1a04fdee710d38bd9468edbf1 numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
033726e7ec59eea6b23307dcec35a37b numpy-1.21.1.tar.gz
1d016e05851a4ba85307f3246eb569aa numpy-1.21.1.zip
SHA256
38e8648f9449a549a7dfe8d8755a5979b45b3538520d1e735637ef28e8c2dc50 numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl
fd7d7409fa643a91d0a05c7554dd68aa9c9bb16e186f6ccfe40d6e003156e33a numpy-1.21.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
a75b4498b1e93d8b700282dc8e655b8bd559c0904b3910b144646dbbbc03e062 numpy-1.21.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
1412aa0aec3e00bc23fbb8664d76552b4efde98fb71f60737c83efbac24112f1 numpy-1.21.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e46ceaff65609b5399163de5893d8f2a82d3c77d5e56d976c8b5fb01faa6b671 numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
c6a2324085dd52f96498419ba95b5777e40b6bcbc20088fddb9e8cbb58885e8e numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
73101b2a1fef16602696d133db402a7e7586654682244344b8329cdcbbb82172 numpy-1.21.1-cp37-cp37m-win32.whl
7a708a79c9a9d26904d1cca8d383bf869edf6f8e7650d85dbc77b041e8c5a0f8 numpy-1.21.1-cp37-cp37m-win_amd64.whl
95b995d0c413f5d0428b3f880e8fe1660ff9396dcd1f9eedbc311f37b5652e16 numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl
635e6bd31c9fb3d475c8f44a089569070d10a9ef18ed13738b03049280281267 numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl
4a3d5fb89bfe21be2ef47c0614b9c9c707b7362386c9a3ff1feae63e0267ccb6 numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl
8a326af80e86d0e9ce92bcc1e65c8ff88297de4fa14ee936cb2293d414c9ec63 numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
791492091744b0fe390a6ce85cc1bf5149968ac7d5f0477288f78c89b385d9af numpy-1.21.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
0318c465786c1f63ac05d7c4dbcecd4d2d7e13f0959b01b534ea1e92202235c5 numpy-1.21.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9a513bd9c1551894ee3d31369f9b07460ef223694098cf27d399513415855b68 numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
91c6f5fc58df1e0a3cc0c3a717bb3308ff850abdaa6d2d802573ee2b11f674a8 numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
978010b68e17150db8765355d1ccdd450f9fc916824e8c4e35ee620590e234cd numpy-1.21.1-cp38-cp38-win32.whl
9749a40a5b22333467f02fe11edc98f022133ee1bfa8ab99bda5e5437b831214 numpy-1.21.1-cp38-cp38-win_amd64.whl
d7a4aeac3b94af92a9373d6e77b37691b86411f9745190d2c351f410ab3a791f numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl
d9e7912a56108aba9b31df688a4c4f5cb0d9d3787386b87d504762b6754fbb1b numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl
25b40b98ebdd272bc3020935427a4530b7d60dfbe1ab9381a39147834e985eac numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl
8a92c5aea763d14ba9d6475803fc7904bda7decc2a0a68153f587ad82941fec1 numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
05a0f648eb28bae4bcb204e6fd14603de2908de982e761a2fc78efe0f19e96e1 numpy-1.21.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f01f28075a92eede918b965e86e8f0ba7b7797a95aa8d35e1cc8821f5fc3ad6a numpy-1.21.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88c0b89ad1cc24a5efbb99ff9ab5db0f9a86e9cc50240177a571fbe9c2860ac2 numpy-1.21.1-cp39-cp39-win32.whl
01721eefe70544d548425a07c80be8377096a54118070b8a62476866d5208e33 numpy-1.21.1-cp39-cp39-win_amd64.whl
2d4d1de6e6fb3d28781c73fbde702ac97f03d79e4ffd6598b880b2d95d62ead4 numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
504ced5d900fd5724c74ebf5dbb03572c04074bec9baa24b5646c66a2450e654 numpy-1.21.1.tar.gz
dff4af63638afcc57a3dfb9e4b26d434a7a602d225b42d746ea7fe2edf1342fd numpy-1.21.1.zip
v1.21.0
NumPy 1.21.0 Release Notes
The NumPy 1.21.0 release highlights are
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new
PCG64DXSM
bitgenerator for random numbers.
In addition there are the usual large number of bug fixes and other improvements.
The Python versions supported for this release are 3.7-3.9. Official support for Python 3.10 will be added when it is released.
- Optimization level
-O3
results in many wrong warnings when running the tests. - On some hardware NumPy will hang in an infinite loop.
New functions
Add PCG64DXSM BitGenerator
Uses of the PCG64 BitGenerator in a massively-parallel context have
been shown to have statistical weaknesses that were not apparent at the
first release in numpy 1.17. Most users will never observe this weakness
and are safe to continue to use PCG64. We have introduced a new
PCG64DXSM BitGenerator that will eventually become the new default
BitGenerator implementation used by default_rng
in future releases.
PCG64DXSM solves the statistical weakness while preserving the
performance and the features of PCG64.
See upgrading-pcg64
for more details.
(gh-18906)
Expired deprecations
-
The
shape
argumentnumpy.unravel_index
cannot be passed asdims
keyword argument anymore. (Was deprecated in NumPy 1.16.)(gh-17900)
-
The function
PyUFunc_GenericFunction
has been disabled. It was deprecated in NumPy 1.19. Users should call the ufunc directly using the Python API.(gh-18697)
-
The function
PyUFunc_SetUsesArraysAsData
has been disabled. It was deprecated in NumPy 1.19.(gh-18697)
-
The class
PolyBase
has been removed (deprecated in numpy 1.9.0). Please use the abstractABCPolyBase
class instead.(gh-18963)
-
The unused
PolyError
andPolyDomainError
exceptions are removed.(gh-18963)
Deprecations
.dtype
attribute must return a dtype
The A DeprecationWarning
is now given if the .dtype
attribute of an
object passed into np.dtype
or as a dtype=obj
argument is not a
dtype. NumPy will stop attempting to recursively coerce the result of
.dtype
.
(gh-13578)
numpy.convolve
and numpy.correlate
are deprecated
Inexact matches for numpy.convolve
and numpy.correlate
now
emit a warning when there are case insensitive and/or inexact matches
found for mode
argument in the functions. Pass full "same"
,
"valid"
, "full"
strings instead of "s"
, "v"
, "f"
for the
mode
argument.
(gh-17492)
np.typeDict
has been formally deprecated
np.typeDict
is a deprecated alias for np.sctypeDict
and has been so
for over 14 years
(6689502).
A deprecation warning will now be issued whenever getting np.typeDict
.
(gh-17586)
Exceptions will be raised during array-like creation
When an object raised an exception during access of the special
attributes __array__
or __array_interface__
, this exception was
usually ignored. A warning is now given when the exception is anything
but AttributeError. To silence the warning, the type raising the
exception has to be adapted to raise an AttributeError
.
(gh-19001)
ndarray.ctypes
methods have been deprecated
Four Four methods of the ndarray.ctypes
object have been
deprecated, as they are (undocumentated) implementation artifacts of
their respective properties.
The methods in question are:
-
_ctypes.get_data
(use_ctypes.data
instead) -
_ctypes.get_shape
(use_ctypes.shape
instead) -
_ctypes.get_strides
(use_ctypes.strides
instead) -
_ctypes.get_as_parameter
(use_ctypes._as_parameter_
instead)
(gh-19031)
Expired deprecations
-
The
shape
argumentnumpy.unravel_index
] cannot be passed asdims
keyword argument anymore. (Was deprecated in NumPy 1.16.)(gh-17900)
-
The function
PyUFunc_GenericFunction
has been disabled. It was deprecated in NumPy 1.19. Users should call the ufunc directly using the Python API.(gh-18697)
-
The function
PyUFunc_SetUsesArraysAsData
has been disabled. It was deprecated in NumPy 1.19.(gh-18697)
PolyBase
and unused PolyError
and PolyDomainError
Remove deprecated The class PolyBase
has been removed (deprecated in numpy 1.9.0).
Please use the abstract ABCPolyBase
class instead.
Furthermore, the unused PolyError
and PolyDomainError
exceptions are
removed from the numpy.polynomial
.
(gh-18963)
Compatibility notes
Error type changes in universal functions
The universal functions may now raise different errors on invalid input
in some cases. The main changes should be that a RuntimeError
was
replaced with a more fitting TypeError
. When multiple errors were
present in the same call, NumPy may now raise a different one.
(gh-15271)
__array_ufunc__
argument validation
NumPy will now partially validate arguments before calling
__array_ufunc__
. Previously, it was possible to pass on invalid
arguments (such as a non-existing keyword argument) when dispatch was
known to occur.
(gh-15271)
__array_ufunc__
and additional positional arguments
Previously, all positionally passed arguments were checked for
__array_ufunc__
support. In the case of reduce
, accumulate
, and
reduceat
all arguments may be passed by position. This means that when
they were passed by position, they could previously have been asked to
handle the ufunc call via __array_ufunc__
. Since this depended on the
way the arguments were passed (by position or by keyword), NumPy will
now only dispatch on the input and output array. For example, NumPy will
never dispatch on the where
array in a reduction such as
np.add.reduce
.
(gh-15271)
Generator.uniform
Validate input values in Checked that high - low >= 0
in np.random.Generator.uniform
. Raises
ValueError
if low > high
. Previously out-of-order inputs were
accepted and silently swapped, so that if low > high
, the value
generated was high + (low - high) * random()
.
(gh-17921)
/usr/include
removed from default include paths
The default include paths when building a package with numpy.distutils
no longer include /usr/include
. This path is normally added by the
compiler, and hardcoding it can be problematic. In case this causes a
problem, please open an issue. A workaround is documented in MR 18658.
(gh-18658)
dtype=...
Changes to comparisons with When the dtype=
(or signature
) arguments to comparison ufuncs
(equal
, less
, etc.) is used, this will denote the desired output
dtype in the future. This means that:
np.equal(2, 3, dtype=object)
will give a FutureWarning
that it will return an object
array in the
future, which currently happens for:
np.equal(None, None, dtype=object)
due to the fact that np.array(None)
is already an object array. (This
also happens for some other dtypes.)
Since comparisons normally only return boolean arrays, providing any
other dtype will always raise an error in the future and give a
DeprecationWarning
now.
(gh-18718)
dtype
and signature
arguments in ufuncs
Changes to The universal function arguments dtype
and signature
which are also
valid for reduction such as np.add.reduce
(which is the implementation
for np.sum
) will now issue a warning when the dtype
provided is not
a "basic" dtype.
NumPy almost always ignored metadata, byteorder or time units on these inputs. NumPy will now always ignore it and raise an error if byteorder or time unit changed. The following are the most important examples of changes which will give the error. In some cases previously the information stored was not ignored, in all of these an error is now raised:
Previously ignored the byte-order (affect if non-native)
np.add(3, 5, dtype=">i32")
The biggest impact is for timedelta or datetimes:
arr = np.arange(10, dtype="m8[s]")
The examples always ignored the time unit "ns":
np.add(arr, arr, dtype="m8[ns]")
np.maximum.reduce(arr, dtype="m8[ns]")
arr.dtype
)
The following previously did use "ns" (as opposed to np.add(3, 5, dtype="m8[ns]") # Now return generic time units
np.maximum(arr, arr, dtype="m8[ns]") # Now returns "s" (from `arr`)
The same applies for functions like np.sum
which use these internally.
This change is necessary to achieve consistent handling within NumPy.
If you run into these, in most cases pass for example
dtype=np.timedelta64
which clearly denotes a general timedelta64
without any unit or byte-order defined. If you need to specify the
output dtype precisely, you may do so by either casting the inputs or
providing an output array using out=
.
NumPy may choose to allow providing an exact output dtype
here in the
future, which would be preceded by a FutureWarning
.
(gh-18718)
signature=...
and dtype=
generalization and casting
Ufunc The behaviour for np.ufunc(1.0, 1.0, signature=...)
or
np.ufunc(1.0, 1.0, dtype=...)
can now yield different loops in 1.21
compared to 1.20 because of changes in promotion. When signature
was
previously used, the casting check on inputs was relaxed, which could
lead to downcasting inputs unsafely especially if combined with
casting="unsafe"
.
Casting is now guaranteed to be safe. If a signature is only partially
provided, for example using signature=("float64", None, None)
, this
could lead to no loop being found (an error). In that case, it is
necessary to provide the complete signature to enforce casting the
inputs. If dtype="float64"
is used or only outputs are set (e.g.
signature=(None, None, "float64")
the is unchanged. We expect that
very few users are affected by this change.
Further, the meaning of dtype="float64"
has been slightly modified and
now strictly enforces only the correct output (and not input) DTypes.
This means it is now always equivalent to:
signature=(None, None, "float64")
(If the ufunc has two inputs and one output). Since this could lead to no loop being found in some cases, NumPy will normally also search for the loop:
signature=("float64", "float64", "float64")
if the first search failed. In the future, this behaviour may be
customized to achieve the expected results for more complex ufuncs. (For
some universal functions such as np.ldexp
inputs can have different
DTypes.)
(gh-18880)
Distutils forces strict floating point model on clang
NumPy distutils will now always add the -ffp-exception-behavior=strict
compiler flag when compiling with clang. Clang defaults to a non-strict
version, which allows the compiler to generate code that does not set
floating point warnings/errors correctly.
(gh-19049)
C API changes
ufunc->type_resolver
and "type tuple"
Use of NumPy now normalizes the "type tuple" argument to the type resolver
functions before calling it. Note that in the use of this type resolver
is legacy behaviour and NumPy will not do so when possible. Calling
ufunc->type_resolver
or PyUFunc_DefaultTypeResolver
is strongly
discouraged and will now enforce a normalized type tuple if done. Note
that this does not affect providing a type resolver, which is expected
to keep working in most circumstances. If you have an unexpected
use-case for calling the type resolver, please inform the NumPy
developers so that a solution can be found.
(gh-18718)
New Features
numpy.number
precisions
Added a mypy plugin for handling platform-specific A mypy plugin is now available for
automatically assigning the (platform-dependent) precisions of certain
numpy.number
subclasses, including the likes of
numpy.int_
, numpy.intp
and
numpy.longlong
. See the documentation on
scalar types <arrays.scalars.built-in>
for a comprehensive overview of the affected classes.
Note that while usage of the plugin is completely optional, without it
the precision of above-mentioned classes will be inferred as
typing.Any
.
To enable the plugin, one must add it to their mypy [configuration file] (https://mypy.readthedocs.io/en/stable/config_file.html):
[mypy]
plugins = numpy.typing.mypy_plugin
(gh-17843)
numpy.number
subclasses
Let the mypy plugin manage extended-precision The mypy plugin, introduced in
numpy/numpy#17843, has
been expanded: the plugin now removes annotations for platform-specific
extended-precision types that are not available to the platform in
question. For example, it will remove numpy.float128
when not available.
Without the plugin all extended-precision types will, as far as mypy is concerned, be available on all platforms.
To enable the plugin, one must add it to their mypy configuration file:
[mypy]
plugins = numpy.typing.mypy_plugin
cn
(gh-18322)
min_digits
argument for printing float values
New A new min_digits
argument has been added to the dragon4 float printing
functions numpy.format_float_positional
and
numpy.format_float_scientific
. This kwd guarantees
that at least the given number of digits will be printed when printing
in unique=True mode, even if the extra digits are unnecessary to
uniquely specify the value. It is the counterpart to the precision
argument which sets the maximum number of digits to be printed. When
unique=False in fixed precision mode, it has no effect and the precision
argument fixes the number of digits.
(gh-18629)
f2py now recognizes Fortran abstract interface blocks
numpy.f2py
can now parse abstract interface blocks.
(gh-18695)
BLAS and LAPACK configuration via environment variables
Autodetection of installed BLAS and LAPACK libraries can be bypassed by
using the NPY_BLAS_LIBS
and NPY_LAPACK_LIBS
environment variables.
Instead, the link flags in these environment variables will be used
directly, and the language is assumed to be F77. This is especially
useful in automated builds where the BLAS and LAPACK that are installed
are known exactly. A use case is replacing the actual implementation at
runtime via stub library links.
If NPY_CBLAS_LIBS
is set (optional in addition to NPY_BLAS_LIBS
),
this will be used as well, by defining HAVE_CBLAS
and appending the
environment variable content to the link flags.
(gh-18737)
ndarray
A runtime-subcriptable alias has been added for numpy.typing.NDArray
has been added, a runtime-subscriptable alias for
np.ndarray[Any, np.dtype[~Scalar]]
. The new type alias can be used for
annotating arrays with a given dtype and unspecified shape.
NumPy does not support the annotating of array shapes as of 1.21,
this is expected to change in the future though (see
646
{.interpreted-text role="pep"}).
Examples
>>> import numpy as np
>>> import numpy.typing as npt
>>> print(npt.NDArray)
numpy.ndarray[typing.Any, numpy.dtype[~ScalarType]]
>>> print(npt.NDArray[np.float64])
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]
>>> NDArrayInt = npt.NDArray[np.int_]
>>> a: NDArrayInt = np.arange(10)
>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
... return np.array(a)
(gh-18935)
Improvements
period
option for numpy.unwrap
Arbitrary The size of the interval over which phases are unwrapped is no longer
restricted to 2 * pi
. This is especially useful for unwrapping
degrees, but can also be used for other intervals.
>>> phase_deg = np.mod(np.linspace(0,720,19), 360) - 180
>>> phase_deg
array([-180., -140., -100., -60., -20., 20., 60., 100., 140.,
-180., -140., -100., -60., -20., 20., 60., 100., 140.,
-180.])
>>> unwrap(phase_deg, period=360)
array([-180., -140., -100., -60., -20., 20., 60., 100., 140.,
180., 220., 260., 300., 340., 380., 420., 460., 500.,
540.])
(gh-16987)
np.unique
now returns single NaN
When np.unique
operated on an array with multiple NaN
entries, its
return included a NaN
for each entry that was NaN
in the original
array. This is now improved such that the returned array contains just
one NaN
as the last element.
Also for complex arrays all NaN
values are considered equivalent (no
matter whether the NaN
is in the real or imaginary part). As the
representant for the returned array the smallest one in the
lexicographical order is chosen - see np.sort
for how the
lexicographical order is defined for complex arrays.
(gh-18070)
Generator.rayleigh
and Generator.geometric
performance improved
The performance of Rayleigh and geometric random variate generation in
Generator
has improved. These are both transformation of exponential
random variables and the slow log-based inverse cdf transformation has
been replaced with the Ziggurat-based exponential variate generator.
This change breaks the stream of variates generated when variates from either of these distributions are produced.
(gh-18666)
Placeholder annotations have been improved
All placeholder annotations, that were previously annotated as
typing.Any
, have been improved. Where appropiate they have been
replaced with explicit function definitions, classes or other
miscellaneous objects.
(gh-18934)
Performance improvements
Improved performance in integer division of NumPy arrays
Integer division of NumPy arrays now uses
libdivide when the divisor is a constant. With
the usage of libdivide and other minor optimizations, there is a large
speedup. The //
operator and np.floor_divide
makes use of the new
changes.
(gh-17727)
np.save
and np.load
for small arrays
Improve performance of np.save
is now a lot faster for small arrays.
np.load
is also faster for small arrays, but only when serializing
with a version >= (3, 0)
.
Both are done by removing checks that are only relevant for Python 2, while still maintaining compatibility with arrays which might have been created by Python 2.
(gh-18657)
Changes
numpy.piecewise
output class now matches the input class
When numpy.ndarray
subclasses are used on input to
numpy.piecewise
, they are passed on to the functions.
The output will now be of the same subclass as well.
(gh-18110)
Enable Accelerate Framework
With the release of macOS 11.3, several different issues that numpy was encountering when using Accelerate Framework's implementation of BLAS and LAPACK should be resolved. This change enables the Accelerate Framework as an option on macOS. If additional issues are found, please file a bug report against Accelerate using the developer feedback assistant tool (https://developer.apple.com/bug-reporting/). We intend to address issues promptly and plan to continue supporting and updating our BLAS and LAPACK libraries.
(gh-18874)
Checksums
MD5
e4b31fd5cb97e50238b3dbb3487b2cb7 numpy-1.21.0-cp37-cp37m-macosx_10_9_x86_64.whl
111e09f3fddd8e14540cf56493dd786a numpy-1.21.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
e2fc116043d1b91c627f3c8884151f33 numpy-1.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
82e267da77628b96cdf8832e475f6ef3 numpy-1.21.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baa416fe77b840a19556f5d808eb3165 numpy-1.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
aba24836f51bb0a855434c41de122e3d numpy-1.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
aa9f94fa6eabfa193902676825934196 numpy-1.21.0-cp37-cp37m-win32.whl
6d771c7670b95adb62627e383c883804 numpy-1.21.0-cp37-cp37m-win_amd64.whl
e6d77cae6054b738603415faf9cb4358 numpy-1.21.0-cp38-cp38-macosx_10_9_universal2.whl
9589cfe5a22f54956101b7131be5cabd numpy-1.21.0-cp38-cp38-macosx_10_9_x86_64.whl
5faa22dffa53cfe7d1d40d48aa817670 numpy-1.21.0-cp38-cp38-macosx_11_0_arm64.whl
b81545a2924a201817d433c3bad0bc7d numpy-1.21.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
3e60589e3325a3583880bf6998cfaca6 numpy-1.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
baf409eb08b7462899d45c42a7c1d854 numpy-1.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4f311de7973503dde6ad3915f158fd63 numpy-1.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
1a79926ad8d3dda573f5c2d8d06e0e38 numpy-1.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
0b39eb396a1d5983f6eb2075a867a1a6 numpy-1.21.0-cp38-cp38-win32.whl
5c8c3e94f5a55123b1a0d3a4df14b505 numpy-1.21.0-cp38-cp38-win_amd64.whl
c6e9fa30e82e3ca1551d2f048d4a1dc4 numpy-1.21.0-cp39-cp39-macosx_10_9_universal2.whl
96d7d3a438296bfc68b819b3624936a5 numpy-1.21.0-cp39-cp39-macosx_10_9_x86_64.whl
31cf2152b4151912be9d165633a7d8eb numpy-1.21.0-cp39-cp39-macosx_11_0_arm64.whl
e49cd2db6ec712b8b1d516154b5a034a numpy-1.21.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c10e13fef152ed1c64151c8b6f6d0799 numpy-1.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
a627acdfcd302807cf8592d5bd958d35 numpy-1.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2287cd16300b363d376b661646fded9 numpy-1.21.0-cp39-cp39-win32.whl
29d1bf596981d930bb1c95c944b4b3d8 numpy-1.21.0-cp39-cp39-win_amd64.whl
42d05fcbab6137a404be36f27fc254f0 numpy-1.21.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
003e34bd2cba06e7fe299a864964ea24 numpy-1.21.0.tar.gz
930ebfdffd10fed701a7823691f02983 numpy-1.21.0.zip
SHA256
d5caa946a9f55511e76446e170bdad1d12d6b54e17a2afe7b189112ed4412bb8 numpy-1.21.0-cp37-cp37m-macosx_10_9_x86_64.whl
ac4fd578322842dbda8d968e3962e9f22e862b6ec6e3378e7415625915e2da4d numpy-1.21.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
598fe100b2948465cf3ed64b1a326424b5e4be2670552066e17dfaa67246011d numpy-1.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
7c55407f739f0bfcec67d0df49103f9333edc870061358ac8a8c9e37ea02fcd2 numpy-1.21.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
75579acbadbf74e3afd1153da6177f846212ea2a0cc77de53523ae02c9256513 numpy-1.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
cc367c86eb87e5b7c9592935620f22d13b090c609f1b27e49600cd033b529f54 numpy-1.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
d89b0dc7f005090e32bb4f9bf796e1dcca6b52243caf1803fdd2b748d8561f63 numpy-1.21.0-cp37-cp37m-win32.whl
eda2829af498946c59d8585a9fd74da3f810866e05f8df03a86f70079c7531dd numpy-1.21.0-cp37-cp37m-win_amd64.whl
1a784e8ff7ea2a32e393cc53eb0003eca1597c7ca628227e34ce34eb11645a0e numpy-1.21.0-cp38-cp38-macosx_10_9_universal2.whl
bba474a87496d96e61461f7306fba2ebba127bed7836212c360f144d1e72ac54 numpy-1.21.0-cp38-cp38-macosx_10_9_x86_64.whl
fd0a359c1c17f00cb37de2969984a74320970e0ceef4808c32e00773b06649d9 numpy-1.21.0-cp38-cp38-macosx_11_0_arm64.whl
e4d5a86a5257843a18fb1220c5f1c199532bc5d24e849ed4b0289fb59fbd4d8f numpy-1.21.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
620732f42259eb2c4642761bd324462a01cdd13dd111740ce3d344992dd8492f numpy-1.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b9205711e5440954f861ceeea8f1b415d7dd15214add2e878b4d1cf2bcb1a914 numpy-1.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ad09f55cc95ed8d80d8ab2052f78cc21cb231764de73e229140d81ff49d8145e numpy-1.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
a1f2fb2da242568af0271455b89aee0f71e4e032086ee2b4c5098945d0e11cf6 numpy-1.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
e58ddb53a7b4959932f5582ac455ff90dcb05fac3f8dcc8079498d43afbbde6c numpy-1.21.0-cp38-cp38-win32.whl
d2910d0a075caed95de1a605df00ee03b599de5419d0b95d55342e9a33ad1fb3 numpy-1.21.0-cp38-cp38-win_amd64.whl
a290989cd671cd0605e9c91a70e6df660f73ae87484218e8285c6522d29f6e38 numpy-1.21.0-cp39-cp39-macosx_10_9_universal2.whl
3537b967b350ad17633b35c2f4b1a1bbd258c018910b518c30b48c8e41272717 numpy-1.21.0-cp39-cp39-macosx_10_9_x86_64.whl
ccc6c650f8700ce1e3a77668bb7c43e45c20ac06ae00d22bdf6760b38958c883 numpy-1.21.0-cp39-cp39-macosx_11_0_arm64.whl
709884863def34d72b183d074d8ba5cfe042bc3ff8898f1ffad0209161caaa99 numpy-1.21.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bebab3eaf0641bba26039fb0b2c5bf9b99407924b53b1ea86e03c32c64ef5aef numpy-1.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
cf680682ad0a3bef56dae200dbcbac2d57294a73e5b0f9864955e7dd7c2c2491 numpy-1.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d95d16204cd51ff1a1c8d5f9958ce90ae190be81d348b514f9be39f878b8044a numpy-1.21.0-cp39-cp39-win32.whl
2ba579dde0563f47021dcd652253103d6fd66165b18011dce1a0609215b2791e numpy-1.21.0-cp39-cp39-win_amd64.whl
3c40e6b860220ed862e8097b8f81c9af6d7405b723f4a7af24a267b46f90e461 numpy-1.21.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b662c841b29848c04d9134f31dbaa7d4c8e673f45bb3a5f28d02f49c424d558a numpy-1.21.0.tar.gz
e80fe25cba41c124d04c662f33f6364909b985f2eb5998aaa5ae4b9587242cce numpy-1.21.0.zip
v1.20.3
NumPy 1.20.3 Release Notes
NumPy 1.20.3 is a bugfix release containing several fixes merged to the main branch after the NumPy 1.20.2 release.
Contributors
A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.
- Anne Archibald
- Bas van Beek
- Charles Harris
- Dong Keun Oh +
- Kamil Choudhury +
- Sayed Adel
- Sebastian Berg
Pull requests merged
A total of 15 pull requests were merged for this release.
-
#18763: BUG: Correct
datetime64
missing type overload fordatetime.date
... -
#18764: MAINT: Remove
__all__
in favor of explicit re-exports - #18768: BLD: Strip extra newline when dumping gfortran version on MacOS
- #18769: BUG: fix segfault in object/longdouble operations
- #18794: MAINT: Use towncrier build explicitly
- #18887: MAINT: Relax certain integer-type constraints
- #18915: MAINT: Remove unsafe unions and ABCs from return-annotations
- #18921: MAINT: Allow more recursion depth for scalar tests.
- #18922: BUG: Initialize the full nditer buffer in case of error
-
#18923: BLD: remove unnecessary flag
-faltivec
on macOS - #18924: MAINT, CI: treats _SIMD module build warnings as errors through...
- #18925: BUG: for MINGW, threads.h existence test requires GLIBC > 2.12
- #18941: BUG: Make changelog recognize gh- as a MR number prefix.
- #18948: REL, DOC: Prepare for the NumPy 1.20.3 release.
- #18953: BUG: Fix failing mypy test in 1.20.x.
Checksums
MD5
702d0185042f1ff9a5d7e72a29f4e1c0 numpy-1.20.3-cp37-cp37m-macosx_10_9_x86_64.whl
3d0284b39b20c243b74f6690ad5ae27f numpy-1.20.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
d1b42dd67dc228088cf822eaab86d424 numpy-1.20.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
126b1a5d46cc7d9b9b426f56d075a1e0 numpy-1.20.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5b0445346f08b610025dbd2064d4b482 numpy-1.20.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
02bd4a2c764882e8af353c16344cb633 numpy-1.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
0f6a36724d5477c8fca6c34e73683db6 numpy-1.20.3-cp37-cp37m-win32.whl
c7d3ae93743d6c0ea2c9dfcad1d42cb4 numpy-1.20.3-cp37-cp37m-win_amd64.whl
445da50ae14b3318170ccf996baca72c numpy-1.20.3-cp38-cp38-macosx_10_9_x86_64.whl
c651fdb4829703e164bc78613c1a90a8 numpy-1.20.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
c9411ef729b8ebe9ed3b8e9dee3da4ac numpy-1.20.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
ff69ad241598607fdfea24155625a6e3 numpy-1.20.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9fd8d44d8a5f19e434e9dfb7738d954f numpy-1.20.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
d144fdfe141442a7f362d498bc9a40c2 numpy-1.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
e7ffa27f1c75cf11529d90967fa15bbc numpy-1.20.3-cp38-cp38-win32.whl
58c12a54d1b5bc14d36ed2b0d8617fef numpy-1.20.3-cp38-cp38-win_amd64.whl
18efbadcb513054c765f826fc3bb1645 numpy-1.20.3-cp39-cp39-macosx_10_9_x86_64.whl
319300952bd42455cb2ad98188c74b5f numpy-1.20.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
1d1451f9a5a2eeef666fc512a101a6ca numpy-1.20.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
cdef3fb002bb5e3036f056ea0528c804 numpy-1.20.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
85e575735877094f3a76106e9d2a9cac numpy-1.20.3-cp39-cp39-win32.whl
59f1dba95dedc7a1bebc58ee7e7a945a numpy-1.20.3-cp39-cp39-win_amd64.whl
6abc979843929b41b099e4e6c0253063 numpy-1.20.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
802ddf90c7e226ba56ed0ea244f8b53d numpy-1.20.3.tar.gz
949d9114af9accc25ede1daa359c4227 numpy-1.20.3.zip
SHA256
70eb5808127284c4e5c9e836208e09d685a7978b6a216db85960b1a112eeace8 numpy-1.20.3-cp37-cp37m-macosx_10_9_x86_64.whl
6ca2b85a5997dabc38301a22ee43c82adcb53ff660b89ee88dded6b33687e1d8 numpy-1.20.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
c5bf0e132acf7557fc9bb8ded8b53bbbbea8892f3c9a1738205878ca9434206a numpy-1.20.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
db250fd3e90117e0312b611574cd1b3f78bec046783195075cbd7ba9c3d73f16 numpy-1.20.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
637d827248f447e63585ca3f4a7d2dfaa882e094df6cfa177cc9cf9cd6cdf6d2 numpy-1.20.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
8b7bb4b9280da3b2856cb1fc425932f46fba609819ee1c62256f61799e6a51d2 numpy-1.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
67d44acb72c31a97a3d5d33d103ab06d8ac20770e1c5ad81bdb3f0c086a56cf6 numpy-1.20.3-cp37-cp37m-win32.whl
43909c8bb289c382170e0282158a38cf306a8ad2ff6dfadc447e90f9961bef43 numpy-1.20.3-cp37-cp37m-win_amd64.whl
f1452578d0516283c87608a5a5548b0cdde15b99650efdfd85182102ef7a7c17 numpy-1.20.3-cp38-cp38-macosx_10_9_x86_64.whl
6e51534e78d14b4a009a062641f465cfaba4fdcb046c3ac0b1f61dd97c861b1b numpy-1.20.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
e515c9a93aebe27166ec9593411c58494fa98e5fcc219e47260d9ab8a1cc7f9f numpy-1.20.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
c1c09247ccea742525bdb5f4b5ceeacb34f95731647fe55774aa36557dbb5fa4 numpy-1.20.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
66fbc6fed94a13b9801fb70b96ff30605ab0a123e775a5e7a26938b717c5d71a numpy-1.20.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
ea9cff01e75a956dbee133fa8e5b68f2f92175233de2f88de3a682dd94deda65 numpy-1.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
f39a995e47cb8649673cfa0579fbdd1cdd33ea497d1728a6cb194d6252268e48 numpy-1.20.3-cp38-cp38-win32.whl
1676b0a292dd3c99e49305a16d7a9f42a4ab60ec522eac0d3dd20cdf362ac010 numpy-1.20.3-cp38-cp38-win_amd64.whl
830b044f4e64a76ba71448fce6e604c0fc47a0e54d8f6467be23749ac2cbd2fb numpy-1.20.3-cp39-cp39-macosx_10_9_x86_64.whl
55b745fca0a5ab738647d0e4db099bd0a23279c32b31a783ad2ccea729e632df numpy-1.20.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
5d050e1e4bc9ddb8656d7b4f414557720ddcca23a5b88dd7cff65e847864c400 numpy-1.20.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
a9c65473ebc342715cb2d7926ff1e202c26376c0dcaaee85a1fd4b8d8c1d3b2f numpy-1.20.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
16f221035e8bd19b9dc9a57159e38d2dd060b48e93e1d843c49cb370b0f415fd numpy-1.20.3-cp39-cp39-win32.whl
6690080810f77485667bfbff4f69d717c3be25e5b11bb2073e76bb3f578d99b4 numpy-1.20.3-cp39-cp39-win_amd64.whl
4e465afc3b96dbc80cf4a5273e5e2b1e3451286361b4af70ce1adb2984d392f9 numpy-1.20.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b7340f0628ce1823c151e3d2a2a8cba2a3ff1357fba4475a24b1816e75c21f90 numpy-1.20.3.tar.gz
e55185e51b18d788e49fe8305fd73ef4470596b33fc2c1ceb304566b99c71a69 numpy-1.20.3.zip
Configuration
-
If you want to rebase/retry this MR, click this checkbox.
This MR has been generated by Renovate Bot.